2025
Flash Communication: Ir Complexes with a PhN(CH2CH2PiPr2)2 Pincer Ligand for Reversible CO2 Hydrogenation
Curley J, Hert C, Bernskoetter W, Hazari N, Mercado B, Wedal J. Flash Communication: Ir Complexes with a PhN(CH2CH2PiPr2)2 Pincer Ligand for Reversible CO2 Hydrogenation. Organometallics 2025 DOI: 10.1021/acs.organomet.5c00153.Peer-Reviewed Original ResearchA highly active sulfur based pincer ruthenium catalyst for CO 2 hydrogenation
Mondragón-Díaz A, Kelley S, Hazari N, Bernskoetter W. A highly active sulfur based pincer ruthenium catalyst for CO 2 hydrogenation. Chemical Communications 2025, 61: 6957-6960. PMID: 40230312, DOI: 10.1039/d5cc01194a.Peer-Reviewed Original Research
2024
Iron Catalysts Supported by a PNP Ligand with an Additional Hemilabile Donor for CO2 Hydrogenation
Wedal J, Virtue K, Bernskoetter W, Hazari N, Mercado B. Iron Catalysts Supported by a PNP Ligand with an Additional Hemilabile Donor for CO2 Hydrogenation. ACS Catalysis 2024, 14: 13903-13914. DOI: 10.1021/acscatal.4c04127.Peer-Reviewed Original ResearchPincer ligandIron complexesIron catalystCO2 hydrogenation to formateCatalyst resting stateIron hydride speciesHydrogenation to formateEther donorsPNP ligandCationic complexesCO2 hydrogenationHydride speciesActive catalystTurnover frequencyCatalytic performanceCatalytic lifetimeIron centerDehydrogenation reactionCatalyst deactivationCatalystTurnover numberCatalytic turnoverIron systemLigandTheoretical study
2019
N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen Evolution
Lant H, Michaelos T, Sharninghausen L, Mercado B, Crabtree R, Brudvig G. N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen Evolution. European Journal Of Inorganic Chemistry 2019, 2019: 2115-2123. DOI: 10.1002/ejic.201801343.Peer-Reviewed Original ResearchAlkoxide moietyOxidation stateOxygen evolutionHigher Mn oxidation statesCatalytic oxygen evolutionO-pincer ligandMn oxidation statePincer ligandRedox levelingElectrochemical dataLow overpotentialProtonation stateProton lossEPR experimentsMn IIIO intermediateRelated seriesMn–VMn IIMoietyLigandsOverpotentialDicationCatalystCatalysisModification of a pyridine-alkoxide ligand during the synthesis of coordination compounds
Shopov D, Sharninghausen L, Sinha S, Mercado B, Brudvig G, Crabtree R. Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chimica Acta 2019, 484: 75-78. DOI: 10.1016/j.ica.2018.09.020.Peer-Reviewed Original ResearchPyridine-alkoxide ligandsWater oxidation catalysisHigher oxidation statesCoordination compoundsPincer ligandGeminal methyl groupsCatalytic conditionsOxidation stateOxidation catalystReaction conditionsMinor byproductsAliphatic alkenesMinor productsOxidative conditionsMethyl groupN-oxideLigandsBlue solutionCH groupPincerStructural analoguesSynthesisComplexesCatalystCentral unit
2012
Iridium Complexes of Bulky CCC-Pincer N‑Heterocyclic Carbene Ligands: Steric Control of Coordination Number and Catalytic Alkene Isomerization
Chianese A, Shaner S, Tendler J, Pudalov D, Shopov D, Kim D, Rogers S, Mo A. Iridium Complexes of Bulky CCC-Pincer N‑Heterocyclic Carbene Ligands: Steric Control of Coordination Number and Catalytic Alkene Isomerization. Organometallics 2012, 31: 7359-7367. DOI: 10.1021/om300468d.Peer-Reviewed Original ResearchIridium complexesN-substituentsIsomerization of terminal alkenesFive-coordinate iridium(IIIIridium(III) complexesPincer ligandTransfer dehydrogenationAlkene isomerizationSteric controlTerminal alkenesActive catalystCoordination numberT-butylIridiumLigandN-octaneCatalystIsomerizationComplexIridium(IIIAlkenesPincerCatalyticallyReactionDerivativesOrganometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen
Luca OR, Blakemore JD, Konezny SJ, Praetorius JM, Schmeier TJ, Hunsinger GB, Batista VS, Brudvig GW, Hazari N, Crabtree RH. Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen. Inorganic Chemistry 2012, 51: 8704-8709. PMID: 22849660, DOI: 10.1021/ic300009a.Peer-Reviewed Original ResearchOrganometallic nickel complexesTridentate pincer ligandsElectrocatalytic proton reductionThird-order rate lawOrder rate lawNickel complexesPincer ligandCatalytic responseProton reductionFaradaic yieldPincer complexesReduction electrocatalysisElectrocatalytic productionCatalytic cycleReduction cycleHydrogen economyComputational studyHydrogen productionRate lawParent compoundCatalystLigandsMechanistic insightsComplexesReactionA tridentate Ni pincer for aqueous electrocatalytic hydrogen production
Luca O, Konezny S, Blakemore J, Colosi D, Saha S, Brudvig G, Batista V, Crabtree R. A tridentate Ni pincer for aqueous electrocatalytic hydrogen production. New Journal Of Chemistry 2012, 36: 1149-1152. DOI: 10.1039/c2nj20912h.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply