2023
Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages
Oliveira G, Vogels C, Zolfaghari A, Saraf S, Klitting R, Weger-Lucarelli J, P Leon K, Ontiveros C, Agarwal R, Tsetsarkin K, Harris E, Ebel G, Wohl S, Grubaugh N, Andersen K. Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages. PLOS Neglected Tropical Diseases 2023, 17: e0011055. PMID: 36753510, PMCID: PMC9907835, DOI: 10.1371/journal.pntd.0011055.Peer-Reviewed Original ResearchConceptsHuman primary cellsFitness differencesVirus lineagesRapid molecular evolutionPrimary cellsShort generation timeAmino acid sitesFitness changesHigh mutation ratePhenotypic evolutionMolecular evolutionPositive selectionMutation rateLineagesPhenotypic analysisPhenotypic changesRNA virusesGeneration timeRecombinant virusesAedes aegypti mosquitoesReplicative fitnessFitnessAegypti mosquitoesMosquitoesZika virusComprehensive analysis of platelet glycoprotein Ibα ectodomain glycosylation
Hollenhorst M, Tiemeyer K, Mahoney K, Aoki K, Ishihara M, Lowery S, Rangel-Angarita V, Bertozzi C, Malaker S. Comprehensive analysis of platelet glycoprotein Ibα ectodomain glycosylation. Journal Of Thrombosis And Haemostasis 2023, 21: 995-1009. PMID: 36740532, PMCID: PMC10065957, DOI: 10.1016/j.jtha.2023.01.009.Peer-Reviewed Original ResearchConceptsO-glycositesGPIb-IX-V complexMajor ligand-binding subunitAmino acid sitesLigand-binding subunitVon Willebrand factor bindingPlatelet glycoprotein IbαMechanosensory domainFactor bindingEndogenous proteinsRecombinant proteinsN-glycositesStructural rolePlatelet biologyGlycan structuresGlycoprotein IbαO-glycansT antigenGlycosylation profileDiverse repertoireGlycosylationGlycansComprehensive analysisGlycositesVon Willebrand factor
2016
Potential arms race in the coevolution of primates and angiosperms: brazzein sweet proteins and gorilla taste receptors
Guevara EE, Veilleux CC, Saltonstall K, Caccone A, Mundy NI, Bradley BJ. Potential arms race in the coevolution of primates and angiosperms: brazzein sweet proteins and gorilla taste receptors. American Journal Of Biological Anthropology 2016, 161: 181-185. PMID: 27393125, DOI: 10.1002/ajpa.23046.Peer-Reviewed Original ResearchConceptsSweet proteinNew sequence dataAmino acid sitesSeed dispersersProtein evolutionAccelerated evolutionBiochemical mimicryPrimate lineageGorilla lineagePositive selectionSequence dataGorilla dietCaloric gainArms raceWestern gorillasBrazzeinAfrican primatesProteinLineagesCoevolutionPentadiplandra brazzeanaLocal plantsSpeciesSweet signalsMutations
2014
Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases
Fan C, Ho JM, Chirathivat N, Söll D, Wang Y. Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases. ChemBioChem 2014, 15: 1805-1809. PMID: 24890918, PMCID: PMC4133344, DOI: 10.1002/cbic.201402083.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesSubstrate rangeDifferent amino acid sitesAmino acidsE. coli tryptophanyl-tRNA synthetaseE. coli aminoacyl-tRNA synthetasesAmino acid sitesCanonical amino acidsNonstandard amino acidsTyrosyl-tRNA synthetaseTryptophanyl-tRNA synthetaseAnticodon sequenceTRNA synthetasesSynthetasesSynthetaseSequenceAnticodonNSAAsTrpRSProteinAminoacylAcid
2010
Anopheles Immune Genes and Amino Acid Sites Evolving Under the Effect of Positive Selection
Parmakelis A, Moustaka M, Poulakakis N, Louis C, Slotman MA, Marshall JC, Awono-Ambene PH, Antonio-Nkondjio C, Simard F, Caccone A, Powell JR. Anopheles Immune Genes and Amino Acid Sites Evolving Under the Effect of Positive Selection. PLOS ONE 2010, 5: e8885. PMID: 20126662, PMCID: PMC2811201, DOI: 10.1371/journal.pone.0008885.Peer-Reviewed Original ResearchConceptsPositive selectionImmune genesGambiae complexDN/dS ratiosLineage-specific evolutionPopulation genetics frameworkAmino acid sitesAnopheles gambiae complexSpecific amino acidsInnate immunity genesAncestral polymorphismComparative phylogeneticsGene diversityEvolutionary historyNatural populationsGenetic diversityGenetic frameworkNatural selectionImmunity genesVector biologyDS ratiosGenesAmino acidsDiversityGenetic knowledge
1991
[15] Biosynthetic method for introducing unnatural amino acids site-specifically into proteins
Ellman J, Mendel D, Anthony-Cahill S, Noren C, Schultz P. [15] Biosynthetic method for introducing unnatural amino acids site-specifically into proteins. Methods In Enzymology 1991, 202: 301-336. PMID: 1784180, DOI: 10.1016/0076-6879(91)02017-4.Peer-Reviewed Original ResearchConceptsAmber nonsense codonUnnatural amino acids siteUnnatural amino acidsTranscription-translation systemAmino acid sitesSuppressor tRNANonsense codonAmino acidsOligonucleotide-directed mutagenesisBiosynthetic methodsAmber mutationGenetic codeTRNAMutagenized DNACodonProtein synthesisChemical aminoacylationSpecific incorporationProteinMutagenesisAcidAminoacylationDNAMutationsSites
1989
Biosynthesis of a Phosphatidylinositol-Glycan-Linked Membrane Protein: Signals for Posttranslational Processing of the Ly-6E Antigen
Su B, Bothwell A. Biosynthesis of a Phosphatidylinositol-Glycan-Linked Membrane Protein: Signals for Posttranslational Processing of the Ly-6E Antigen. Molecular And Cellular Biology 1989, 9: 3369-3376. DOI: 10.1128/mcb.9.8.3369-3376.1989.Peer-Reviewed Original ResearchPhosphatidylinositol-glycanPhosphatidylinositol-glycan tailMutant proteinsLy-6Proteolytic cleavagePhosphatidylinositol glycan moietyPrimary translation productAmino acid sitesLy-6 proteinsCarboxy-terminal residuesTransient transfection proceduresCell surface proteinsMurine cell surface proteinLy-6 antigensCytoplasmic tailTranslation productsCleavage siteAsn residuesCOS cellsMembrane proteinsCOOH terminusPosttranslational processingPlasma membraneSurface proteinsTransmembrane form
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply