2025
Outcome adaptive propensity score methods for handling censoring and high-dimensionality: Application to insurance claims
Du J, Yu Y, Zhang M, Wu Z, Ryan A, Mukherjee B. Outcome adaptive propensity score methods for handling censoring and high-dimensionality: Application to insurance claims. Statistical Methods In Medical Research 2025, 34: 847-866. PMID: 40013476, DOI: 10.1177/09622802241306856.Peer-Reviewed Original ResearchPropensity score modelHigh-dimensional settingsVariable selection procedureTreatment effect estimatesPropensity score estimationAverage treatment effectVariable selection methodsModel misspecificationMultiple treatment groupsSimulation studyRegularization methodStatistical efficiencyBinary outcomesScore estimationOutcome probabilitiesSelection procedureHigh-dimensionalTreatment effectsEffect estimatesVariables related to treatmentCensoringPropensity scoreMisspecificationEstimationPropensity score methods
2024
Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders
Rahaman A, Garg Y, Iraji A, Fu Z, Kochunov P, Hong L, Van Erp T, Preda A, Chen J, Calhoun V. Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders. Human Brain Mapping 2024, 45: e26799. PMID: 39562310, PMCID: PMC11576332, DOI: 10.1002/hbm.26799.Peer-Reviewed Original ResearchConceptsNeural networkDilated convolutional neural networkJoint learning frameworkAttention scoresState-of-the-artDeep neural networksNeural network decisionsConvolutional neural networkAttention fusionFusion moduleDiverse data sourcesArtificial intelligence modelsLearning frameworkAttention moduleJoint learningMultimodal clusteringNetwork decisionsInput streamMultimodal learningHigh-dimensionalIntermediate fusionFused dataSZ classificationIntelligence modelsContextual patternsExploring nonlinear dynamics in brain functionality through phase portraits and fuzzy recurrence plots
Li Q, Calhoun V, Pham T, Iraji A. Exploring nonlinear dynamics in brain functionality through phase portraits and fuzzy recurrence plots. Chaos An Interdisciplinary Journal Of Nonlinear Science 2024, 34: 103123. PMID: 39393183, DOI: 10.1063/5.0203926.Peer-Reviewed Original ResearchConceptsFuzzy recurrence plotsPhase portraitsComplex brain networksConnectivity descriptorsLow-dimensional dynamicsField of statistical physicsNonlinear dynamicsNeural mass modelMass modelRecurrence plotsStatistical physicsNeural time seriesFunctional connectivityLimit cycle attractorNonlinear phenomenaHidden informationComplex networksLatent informationPhase trajectoriesHigh-dimensionalDynamical theoryBrain functional connectivityBrain connectivityBrain networksNeural dynamicsBayesian Spectral Graph Denoising with Smoothness Prior
Leone S, Sun X, Perlmutter M, Krishnaswamy S. Bayesian Spectral Graph Denoising with Smoothness Prior. 2024, 00: 1-6. DOI: 10.1109/ciss59072.2024.10480177.Peer-Reviewed Original ResearchPresence of noisy dataGraph signal processingMaximum A PosterioriAffinity graphDenoised featuresGaussian noiseNoisy dataHigh-dimensionalComplex dataAlgorithm's abilityA-posterioriModel of noise generationSmoothness priorsRestored signalDistributed noiseSignal processingAlgorithmImage dataGraphFrequency domainNoiseNoise generationDenoisingWhite noiseSmoothing
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply