2025
GWAS meta-meta-analysis and related analyses revealed a shared genetic background between ADHD and narcolepsy
Modestino E, Sharafshah A, Lewandrowski K, Carey E, Mohankumar K, Thanos P, Pinhasov A, Bowirrat A, Baron D, Gold M, Elman I, Gardner E, Fuehrlein B, Zeine F, Jafari N, Dennen C, Lewandrowski A, Badgaiyan R, Blum K. GWAS meta-meta-analysis and related analyses revealed a shared genetic background between ADHD and narcolepsy. Academia Molecular Biology And Genomics 2025, 2 DOI: 10.20935/acadmolbiogen7751.Peer-Reviewed Original ResearchProtein-protein interactionsGene listsAttention-deficit hyperactivity disorderReward Deficiency SyndromeGWAS meta-analysesGWAS Catalog databasePGx analysisPGx dataFamily genesSystems biologyGenetic basisGWASShared genesSusceptibility to narcolepsyGenesGenetic backgroundRBFOX1PGxMeta-meta-analysisComprehensive data miningDopaminergic reward systemTherapeutic targetFOXP2Potential endophenotypesAddictive behaviorsMulti-ancestry genome-wide meta-analysis of 56,241 individuals identifies known and novel cross-population and ancestry-specific associations as novel risk loci for Alzheimer’s disease
Rajabli F, Benchek P, Tosto G, Kushch N, Sha J, Bazemore K, Zhu C, Lee W, Haut J, Hamilton-Nelson K, Wheeler N, Zhao Y, Farrell J, Grunin M, Leung Y, Kuksa P, Li D, da Fonseca E, Mez J, Palmer E, Pillai J, Sherva R, Song Y, Zhang X, Ikeuchi T, Iqbal T, Pathak O, Valladares O, Reyes-Dumeyer D, Kuzma A, Abner E, Adams L, Adams P, Aguirre A, Albert M, Albin R, Allen M, Alvarez L, Apostolova L, Arnold S, Asthana S, Atwood C, Auerbach S, Ayres G, Baldwin C, Barber R, Barnes L, Barral S, Beach T, Becker J, Beecham G, Beekly D, Benitez B, Bennett D, Bertelson J, Bird T, Blacker D, Boeve B, Bowen J, Boxer A, Brewer J, Burke J, Burns J, Buxbaum J, Cairns N, Cantwell L, Cao C, Carlson C, Carlsson C, Carney R, Carrasquillo M, Chasse S, Chesselet M, Chin N, Chui H, Chung J, Craft S, Crane P, Cribbs D, Crocco E, Cruchaga C, Cuccaro M, Cullum M, Darby E, Davis B, De Jager P, DeCarli C, DeToledo J, Dick M, Dickson D, Dombroski B, Doody R, Duara R, Ertekin-Taner N, Evans D, Faber K, Fairchild T, Fallon K, Fardo D, Farlow M, Fernandez-Hernandez V, Ferris S, Friedland R, Foroud T, Frosch M, Fulton-Howard B, Galasko D, Gamboa A, Gearing M, Geschwind D, Ghetti B, Gilbert J, Go R, Goate A, Grabowski T, Graff-Radford N, Green R, Growdon J, Hakonarson H, Hall J, Hamilton R, Harari O, Hardy J, Harrell L, Head E, Henderson V, Hernandez M, Hohman T, Honig L, Huebinger R, Huentelman M, Hulette C, Hyman B, Hynan L, Ibanez L, Jarvik G, Jayadev S, Jin L, Johnson K, Johnson L, Kamboh M, Karydas A, Katz M, Kauwe J, Kaye J, Keene C, Khaleeq A, Kikuchi M, Kim R, Knebl J, Kowall N, Kramer J, Kukull W, LaFerla F, Lah J, Larson E, Lerner A, Leverenz J, Levey A, Lieberman A, Lipton R, Logue M, Lopez O, Lunetta K, Lyketsos C, Mains D, Margaret F, Marson D, Martin E, Martiniuk F, Mash D, Masliah E, Massman P, Masurkar A, McCormick W, McCurry S, McDavid A, McDonough S, McKee A, Mesulam M, Miller B, Miller C, Miller J, Montine T, Monuki E, Morris J, Mukherjee S, Myers A, Nguyen T, Obisesan T, O’Bryant S, Olichney J, Ory M, Palmer R, Parisi J, Paulson H, Pavlik V, Paydarfar D, Perez V, Peskind E, Petersen R, Petrovitch H, Pierce A, Polk M, Poon W, Potter H, Qu L, Quiceno M, Quinn J, Raj A, Raskind M, Reiman E, Reisberg B, Reisch J, Ringman J, Roberson E, Rodriguear M, Rogaeva E, Rosen H, Rosenberg R, Royall D, Sabbagh M, Sadovnick A, Sager M, Sano M, Saykin A, Schneider J, Schneider L, Seeley W, Slifer S, Small S, Smith A, Smith J, Sonnen J, Spina S, George-Hyslop P, Starks T, Stern R, Stevens A, Strittmatter S, Sultzer D, Swerdlow R, Tanzi R, Tilson J, Trojanowski J, Troncoso J, Tsolaki M, Tsuang D, Van Deerlin V, van Eldik L, Vance J, Vardarajan B, Vassar R, Vinters H, Vonsattel J, Weintraub S, Welsh-Bohmer K, Whitehead P, Wijsman E, Wilhelmsen K, Williams B, Williamson J, Wilms H, Wingo T, Wisniewski T, Woltjer R, Woon M, Wright C, Wu C, Younkin S, Yu C, Yu L, Zhu X, Kunkle B, Bush W, Miyashita A, Byrd G, Wang L, Farrer L, Haines J, Mayeux R, Pericak-Vance M, Schellenberg G, Jun G, Reitz C, Naj A. Multi-ancestry genome-wide meta-analysis of 56,241 individuals identifies known and novel cross-population and ancestry-specific associations as novel risk loci for Alzheimer’s disease. Genome Biology 2025, 26: 210. PMID: 40676597, PMCID: PMC12273372, DOI: 10.1186/s13059-025-03564-z.Peer-Reviewed Original ResearchConceptsLate-onset Alzheimer's diseaseGenome-wide association studiesAlzheimer's Disease Genetics ConsortiumNon-Hispanic whitesAlzheimer's diseaseGenome-Wide Meta-AnalysisPopulation-specific lociGenome-wide significanceNeuronal developmentMeta-analysisReceptor activity regulationGWAS meta-analysesEast Asian individualsGWAS datasetFixed-effect meta-analysisGenetic architectureRisk lociCross-ancestryAssociation studiesRandom-effects meta-analysisSusceptibility lociDiverse ancestryGWAS studiesGenetics ConsortiumRisk variantsMulti-ancestry genome-wide association meta-analysis of buprenorphine treatment response
Davis C, Khan Y, Crist R, Vickers-Smith R, Hartwell E, Gelernter J, Kampman K, Kember R, Le Moigne A, Laffont C, Kranzler H. Multi-ancestry genome-wide association meta-analysis of buprenorphine treatment response. Neuropsychopharmacology 2025, 50: 1346-1353. PMID: 40328918, PMCID: PMC12260092, DOI: 10.1038/s41386-025-02117-z.Peer-Reviewed Original ResearchGenome-wide association studiesTreatment responseOpioid use disorderGenome-wide significant lociGWAS meta-analysesCross-ancestry meta-analysisClinical characteristicsGenome-wide association meta-analysisGenetic predictors of treatment responseMeta-analysisPresence of chronic painAssociation meta-analysisUse disorderPartial agonist buprenorphinePhenome-wide association analysisTreat opioid use disorderPredictors of treatment responseExtended-release buprenorphineMillion Veteran ProgramSignificant lociLead variantsCross-ancestryAssociation studiesOdds of treatment responseAssociation analysis
2024
Exploiting meta-analysis of genome-wide interaction with serum 25-hydroxyvitamin D to identify novel genetic loci associated with pulmonary function
Seo J, Gaddis N, Patchen B, Xu J, Barr R, O’Connor G, Manichaikul A, Gharib S, Dupuis J, North K, Cassano P, Hancock D. Exploiting meta-analysis of genome-wide interaction with serum 25-hydroxyvitamin D to identify novel genetic loci associated with pulmonary function. American Journal Of Clinical Nutrition 2024, 119: 1227-1237. PMID: 38484975, PMCID: PMC11130669, DOI: 10.1016/j.ajcnut.2024.03.007.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesGenome-wide interactionsGWAS meta-analysesGenome-wide genotypingGenetic variant associationsPathway enrichment analysisGenetic architectureVariant associationsP38 MAPK pathwayAssociation studiesGene-environment interactionsBiological insightsGenetic variantsEnrichment analysisVariant signalsMeta-analyzed resultsMAPK pathwayBiological relevancePathwayForced Vital CapacityEvaluate interactive effectsMeta-analysesVariantsSmoking historyAssociated with FEV<sub>1</sub> anGenetic contribution to the comorbidity between attention-deficit/hyperactivity disorder and substance use disorders
Koller D, Mitjans M, Kouakou M, Friligkou E, Cabrera-Mendoza B, Deak J, Llonga N, Pathak G, Stiltner B, Løkhammer S, Levey D, Zhou H, Hatoum A, Kember R, Kranzler H, Stein M, Corominas R, Demontis D, Artigas M, Ramos-Quiroga J, Gelernter J, Ribasés M, Cormand B, Polimanti R. Genetic contribution to the comorbidity between attention-deficit/hyperactivity disorder and substance use disorders. Psychiatry Research 2024, 333: 115758. PMID: 38335780, PMCID: PMC11157987, DOI: 10.1016/j.psychres.2024.115758.Peer-Reviewed Original ResearchConceptsUse disorderGenome-wide association studiesGenomic structural equation modelingCannabis use disorderAlcohol Use Disorders Identification TestAttention-deficit/hyperactivity disorderAlcohol use disorderProblematic alcohol useSubstance use disordersTwo-sample Mendelian randomization analysisLinkage disequilibrium score regression analysisDisorders Identification TestMendelian randomization analysisAssociated with increased oddsOdds of ADHDOpioid use disorderAttention-deficit/hyperactivityGWAS meta-analysesAlcohol dependenceStructural equation modelingNicotine dependenceInvestigate genetic correlationsADHDPolygenic riskStrength of evidence
2021
Revisiting the genome-wide significance threshold for common variant GWAS
Chen Z, Boehnke M, Wen X, Mukherjee B. Revisiting the genome-wide significance threshold for common variant GWAS. G3: Genes, Genomes, Genetics 2021, 11: jkaa056. PMID: 33585870, PMCID: PMC8022962, DOI: 10.1093/g3journal/jkaa056.Peer-Reviewed Original ResearchConceptsGenome-wide significance thresholdP-value thresholdGWAS meta-analysesMeta-analysis consortiumExcessive false positive ratesSignificance thresholdGene set enrichmentBenjamini-Yekutieli procedureModest-sized studiesFDR-controlling proceduresGlobal lipidsMeta-analysesPathway analysisGWASReplication studyP-valueIncreased discoveryMultiple testing strategiesSample sizePositive discoveriesBenjamini-HochbergLipid levelsTesting strategiesDownstream workFDR
2020
Genetic Variation and Autism: A Field Synopsis and Systematic Meta-Analysis
Lee J, Son M, Son C, Jeong G, Lee K, Lee K, Ko Y, Kim J, Lee J, Radua J, Eisenhut M, Gressier F, Koyanagi A, Stubbs B, Solmi M, Rais T, Kronbichler A, Dragioti E, Vasconcelos D, da Silva F, Tizaoui K, Brunoni A, Carvalho A, Cargnin S, Terrazzino S, Stickley A, Smith L, Thompson T, Shin J, Fusar-Poli P. Genetic Variation and Autism: A Field Synopsis and Systematic Meta-Analysis. Brain Sciences 2020, 10: 692. PMID: 33007889, PMCID: PMC7600188, DOI: 10.3390/brainsci10100692.Peer-Reviewed Original ResearchFalse positive report probabilityBayesian false-discovery probabilityGenome-wide association studiesGenome-wide association study catalogMeta-analysesGWAS meta-analysesMeta-analyses of observational studiesAssociated with ASD riskGenetic comparisonsIncreased risk of ASDRisk of autism spectrum disorderGenetic risk factorsReport probabilityStudy designAssociation studiesObservational studyIncreased riskRisk factorsLiterature searchAutism spectrum disorderGenetic factorsBayesian approachPubMedSpectrum disorderInception
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply