2024
Homological Landscape of Human Brain Functional Sub-Circuits
Duong-Tran D, Kaufmann R, Chen J, Wang X, Garai S, Xu F, Bao J, Amico E, Kaplan A, Petri G, Goni J, Zhao Y, Shen L. Homological Landscape of Human Brain Functional Sub-Circuits. Mathematics 2024, 12: 455. DOI: 10.3390/math12030455.Peer-Reviewed Original ResearchFunctional sub-circuitsHuman brain functional connectivityWhole-brain functional connectivity networksNon-local propertiesWorking Memory TaskWhole-brain levelBrain functional connectivityNon-localFunctional connectivity networksMemory taskEmotional tasksLimbic networkMode networkFunctional connectivityBrain connectomeWhole-brainFormalismLocal structureMotor tasksConnectivity networksSubject domainSub-circuitsTaskBalancing Covariates in Randomized Experiments with the Gram–Schmidt Walk Design
Harshaw C, Sävje F, Spielman D, Zhang P. Balancing Covariates in Randomized Experiments with the Gram–Schmidt Walk Design. Journal Of The American Statistical Association 2024, 119: 2934-2946. DOI: 10.1080/01621459.2023.2285474.Peer-Reviewed Original ResearchConservative variance estimatorsLinear functionAverage treatment effectAsymptotic normalityFinite samplesVariance estimationCovariate balanceSupplementary materialsMean square errorRidge regressionLoss functionCovariatesRandomized experimentEstimationPotential outcomesGram-SchmidtLevel of robustnessRobust parameterWalking designConfidence intervalsFunctionSquare errorTreatment effectsRobustnessFormalism
2016
Protein Structure and Function: Looking through the Network of Side-Chain Interactions.
Bhattacharyya M, Ghosh S, Vishveshwara S. Protein Structure and Function: Looking through the Network of Side-Chain Interactions. Current Protein And Peptide Science 2016, 17: 4-25. PMID: 26412788, DOI: 10.2174/1389203716666150923105727.Peer-Reviewed Original ResearchConceptsNetwork theoryImportant problemComplex biological problemsProtein structure networksBipartite networksStructure networkEquilibrium structureModel validationDifferent schemesBiological problemsProblemNetwork approachTheoryNetwork metricsGeneral applicationComplex phenomenonGeneral featuresFormalismNetworkLarge numberProtein structureGeometrySpecific featuresBiological dataEnsemble
2010
MO‐EE‐A1‐04: A Generalized Dose‐Rate Constant Formalism for Brachytherapy Sources Emitting Anisotropic Photon Energy Spectrum
Chen Z, Nath R. MO‐EE‐A1‐04: A Generalized Dose‐Rate Constant Formalism for Brachytherapy Sources Emitting Anisotropic Photon Energy Spectrum. Medical Physics 2010, 37: 3347-3347. DOI: 10.1118/1.3469082.Peer-Reviewed Original ResearchDose deposition kernelPhoton energy spectrumEnergy spectrumBrachytherapy sourcesGeneral formalismPrimary photonsTransverse bisectorPhoton sourcesLow-energy brachytherapy sourcesMass energy absorption coefficientsDose-rate constantContribution of scattered photonsInterstitial brachytherapy sourcesAngular energy spectraIsotropic energy spectrumScattered photonsRadioactive sourcesDosimetry parametersPhotonsEnergy EPhoton emissionDose-rateFormalismSpectraBrachytherapy
2002
Fractal characterization of complexity in temporal physiological signals
Eke A, Herman P, Kocsis L, Kozak L. Fractal characterization of complexity in temporal physiological signals. Physiological Measurement 2002, 23: r1-r38. PMID: 11876246, DOI: 10.1088/0967-3334/23/1/201.Peer-Reviewed Original ResearchConceptsFractal time series analysisFractional Brownian motionFractional Gaussian noiseMathematical formalismFractal estimatesTime series analysisBrownian motionNumerical experimentsSeries analysisFractal geometryFractal analysisScale invarianceGaussian noiseFractal toolsFractal structurePower-law scaling relationshipSignal classesFundamental propertiesMain applicationsFractal dimensionEssential featuresFractal characterizationSignal classificationFormalismModel
2001
Thurston's geometrization conjecture and cosmological models
Yasuno K, Koike T, Siino M. Thurston's geometrization conjecture and cosmological models. Classical And Quantum Gravity 2001, 18: 1405. DOI: 10.1088/0264-9381/18/8/301.Peer-Reviewed Original ResearchGeometrization conjectureThurston's geometrization conjectureVector fieldsEinstein equationsThin shell approximationSpatial torusDynamical behaviorInhomogeneous spacetimesCosmological modelsVacuum spacetimesJunction conditionsSpacetimeTimelike hypersurfaceTorusConjectureConcrete modelApproximationEquationsHypersurfacesFormalismFieldModelFormulationSumProblemDosimetric penumbra effects in catheter-based intravascular brachytherapy using a centered photon or beta line source
Yue N, Nath R, Roberts K. Dosimetric penumbra effects in catheter-based intravascular brachytherapy using a centered photon or beta line source. Cardiovascular Revascularization Medicine 2001, 2: 32-38. PMID: 11068253, DOI: 10.1016/s1522-1865(00)00044-5.Peer-Reviewed Original ResearchLongitudinal dose uniformityCatheter-based intravascular brachytherapyRate kernelLine sourceCylindrical blood vesselPenumbra effectMonte Carlo simulationsBlood vesselsMargin lengthRadiation transportCarlo simulationsPhoton emittersEdge effectsRatio of doseDose distributionIntravascular brachytherapySource lengthRadial depthLength LRadioactive sourcesLinear sourceFormalismPhoton sourcesPoints of interestCorresponding radionuclide
2000
Dosimetric penumbra effects in catheter-based intravascular brachytherapy using a centered photon or beta line source.
Yue N, Nath R, Roberts K. Dosimetric penumbra effects in catheter-based intravascular brachytherapy using a centered photon or beta line source. Cardiovascular Revascularization Medicine 2000, 2: 32-8. PMID: 11229060.Peer-Reviewed Original ResearchConceptsLongitudinal dose uniformityCatheter-based intravascular brachytherapyRate kernelLine sourceCylindrical blood vesselPenumbra effectMonte Carlo simulationsBlood vesselsMargin lengthRadiation transportCarlo simulationsPhoton emittersEdge effectsRatio of doseDose distributionIntravascular brachytherapySource lengthRadial depthLength LRadioactive sourcesLinear sourceFormalismPhoton sourcesPoints of interestCorresponding radionuclide
1997
Distribution functions for clusters of galaxies from N-body simulations
Natarajan P, Hjorth J, van Kampen E. Distribution functions for clusters of galaxies from N-body simulations. Monthly Notices Of The Royal Astronomical Society 1997, 286: 329-343. DOI: 10.1093/mnras/286.2.329.Peer-Reviewed Original ResearchCosmological N-body simulationsClusters of galaxiesN-body simulationsAccessible phase spaceDistribution function formalismAnisotropic distribution functionsLarge-scale structureGalaxy clustersStellar dynamicsVirialized regionsFunction formalismMotivated extensionPhase spaceDistribution functionGalaxiesFormalismClustersSpaceDynamicsSimulationsExtension
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply