2023
Structural basis for recruitment of host CypA and E3 ubiquitin ligase by maedi-visna virus Vif
Hu Y, Gudnadóttir R, Knecht K, Arizaga F, Jónsson S, Xiong Y. Structural basis for recruitment of host CypA and E3 ubiquitin ligase by maedi-visna virus Vif. Science Advances 2023, 9: eadd3422. PMID: 36638173, PMCID: PMC9839330, DOI: 10.1126/sciadv.add3422.Peer-Reviewed Original ResearchConceptsMVV VifCryo-electron microscopy structureE3 ubiquitin ligase complexLentiviral VifUbiquitin ligase complexHost cofactorsUbiquitin-proteasome pathwayDistinct interaction modesUnique structural elementsLentiviral Vif proteinsEvolutionary relationshipsMicroscopy structureLigase complexCellular proteinsE3 ubiquitinAntiviral APOBEC3Structural basisFunctional analysisMolecular mechanismsMaedi-visna virusRecruitment mechanismsVif proteinCofactorProteinCypA
2022
Elements of the ERAD ubiquitin ligase Doa10 regulating sequential poly-ubiquitylation of its targets
Mehrtash A, Hochstrasser M. Elements of the ERAD ubiquitin ligase Doa10 regulating sequential poly-ubiquitylation of its targets. IScience 2022, 25: 105351. PMID: 36325070, PMCID: PMC9619350, DOI: 10.1016/j.isci.2022.105351.Peer-Reviewed Original ResearchC-terminal elementsUbiquitin ligase Doa10RING-CH domainDoa10 substratesSubstrate ubiquitylationRetrotranslocation channelSingle ubiquitinIntragenic suppressionCofactor-binding regionPolyubiquitin chainsDoa10E3 ubiquitinER proteinsTruncation analysisStructural predictionsStructure predictionUBC6Ubc7UbiquitylationDirect roleMechanistic insightsE2 bindsUbiquitinBindsERAD
2020
The Daam2–VHL–Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation
Ding X, Jo J, Wang C, Cristobal C, Zuo Z, Ye Q, Wirianto M, Lindeke-Myers A, Choi J, Mohila C, Kawabe H, Jung S, Bellen H, Yoo S, Lee H. The Daam2–VHL–Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes & Development 2020, 34: 1177-1189. PMID: 32792353, PMCID: PMC7462057, DOI: 10.1101/gad.338046.120.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationGene Expression Regulation, DevelopmentalHumansMiceMice, KnockoutMicrofilament ProteinsMultiple SclerosisMyelin SheathNedd4 Ubiquitin Protein LigasesNerve RegenerationNervous System DiseasesOligodendrogliaProtein Stabilityrho GTP-Binding ProteinsUbiquitinationVon Hippel-Lindau Tumor Suppressor ProteinConceptsWhite matter injuryUbiquitin-proteasomal systemGenetic knockout mouse modelsOligodendrocyte differentiationWhite matter lesionsKnockout mouse modelDemyelination modelMultiple sclerosisDisease-driving proteinsMatter lesionsOligodendrocyte dysfunctionPathogenic accumulationMouse modelDevelopmental myelinationNeurological disordersGlial biologyOligodendrocyte developmentE3 ligase VHLVHLRepairE3 ubiquitinProteomic analysisRemyelinationSclerosisPatients
2019
Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function
Feke A, Liu W, Hong J, Li MW, Lee CM, Zhou EK, Gendron JM. Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. ELife 2019, 8: e44558. PMID: 30950791, PMCID: PMC6483598, DOI: 10.7554/elife.44558.Peer-Reviewed Original ResearchConceptsE3 ubiquitin ligasesUbiquitin ligasesCircadian clockCircadian functionPlant E3 ubiquitin ligasesTransgenic Arabidopsis plantsNew potential regulatorsArabidopsis plantsRegulated degradationPlant developmentClock proteinsClock regulatorsFunctional redundancyE3 ubiquitinProtein degradationGenetic challengesLigasesPotential regulatorCircadian periodScreening platformUbiquitinRegulatorDecoysSplicingClock
2017
Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target Proteins
Coleman K, Crews C. Proteolysis–Targeting Chimeras: Harnessing the Ubiquitin–Proteasome System to Induce Degradation of Specific Target Proteins. Annual Review Of Cancer Biology 2017, 2: 1-18. DOI: 10.1146/annurev-cancerbio-030617-050430.Peer-Reviewed Original ResearchProteolysis-targeting chimerasSpecific target proteinsUbiquitin-proteasome systemTarget proteinsNew cell biologyCancer Biology Volume 2Accumulation of proteinsProtein homeostasisUndruggable proteinsE3 ubiquitinMammalian cellsCell biologyProteasome complexFinal online publication dateProteinOnline publication dateProteolytic degradationMultistep processCancer cellsProteasome inhibitorsPathological proteinsNovel therapeuticsCentral roleBifunctional moleculesCells
2016
FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis
Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Scientific Reports 2016, 6: 22787. PMID: 26972597, PMCID: PMC4789601, DOI: 10.1038/srep22787.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsAnimalsApoptosisBaculoviral IAP Repeat-Containing 3 ProteinBlotting, WesternCASP8 and FADD-Like Apoptosis Regulating ProteinCaspase 8Cell LineCell SurvivalFas-Associated Death Domain ProteinHCT116 CellsHEK293 CellsHeLa CellsHT29 CellsHumansInhibitor of Apoptosis ProteinsMCF-7 CellsMiceNF-kappa BNIH 3T3 CellsProtein BindingRepressor ProteinsRNA InterferenceTumor Necrosis Factor-alphaUbiquitin-Protein LigasesUbiquitinationConceptsCell deathProcaspase-8Molecular mechanismsCellular FLICE-like inhibitory proteinFLICE-like inhibitory proteinExpression of cFLIPLCell death signalingApoptosis protein 2Apoptotic cell death signalingHEK 293T cellsNovel molecular mechanismApoptotic cell deathNF-κB activationFasL stimulationCellular inhibitorE3 ubiquitinTNF-α stimulationDeath domainDeath inducingDeath signalingEctopic expressionFADDCaspase-8NF-κBCell survival
2010
Innate Immunity to Viruses
Iwasaki A. Innate Immunity to Viruses. 2010, 183-196. DOI: 10.1128/9781555816872.ch15.Peer-Reviewed Original ResearchDNA virusesEndosomal trafficking eventsHost cell machineryMechanism of RNAiAbsence of VpuInnate immunityTrafficking eventsEndonuclease familyCell machineryCytoplasmic DNAE3 ubiquitinLipid raftsCaspase-1 inflammasomeAnalysis of animalCell surfaceViral dsRNADistinct rolesNeighboring cellsAntiviral stateBillions of yearsLike receptorsI IFN productionComplementary sequencesViral RNARNA
2009
The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation
Bello NF, Lamsoul I, Heuzé ML, Métais A, Moreaux G, Calderwood DA, Duprez D, Moog-Lutz C, Lutz PG. The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death & Differentiation 2009, 16: 921-932. PMID: 19300455, PMCID: PMC2709956, DOI: 10.1038/cdd.2009.27.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCarrier ProteinsCell DifferentiationCell LineChickensContractile ProteinsFilaminsGene Knockdown TechniquesHumansMiceMicrofilament ProteinsMyoblastsProteasome Endopeptidase ComplexRNA InterferenceRNA, MessengerSuppressor of Cytokine Signaling ProteinsUbiquitin-Protein LigasesConceptsFilamin BMuscle differentiationSpecificity subunitAnkyrin repeat-containing proteinActive E3 ubiquitin ligaseE3 ubiquitin ligase complexRepeat-containing proteinUbiquitin ligase complexE3 ubiquitin ligaseSuppressor of cytokineBox 2 geneLigase complexE3 ubiquitinUbiquitin ligaseProteasomal degradationMyoblast fusionNovel regulatorMuscle developmentKnockdown cellsProtein degradationMyogenic differentiationAdult tissuesC2C12 cellsMuscle contractile proteinsInduced differentiation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply