2025
The case-only design is a powerful approach to detect interactions but should be used with caution
Dong R, Wang G, DeWan A, Leal S. The case-only design is a powerful approach to detect interactions but should be used with caution. BMC Genomics 2025, 26: 222. PMID: 40050722, PMCID: PMC11884093, DOI: 10.1186/s12864-025-11318-1.Peer-Reviewed Original ResearchConceptsCase-only designRare disease assumptionType I error rateIncreased type I error ratesDisease prevalenceInvestigated type I errorComplex traitsInteraction termsInteraction effect sizesDetect interactionsCase-control designControlled type I error ratesSample sizeHigher disease prevalenceEffect sizeLow disease prevalenceType I errorPrevalenceExposure frequencyGenesType I andDesign studyEnvironmental factorsTraitsEnvironment interaction
2024
LDER-GE estimates phenotypic variance component of gene–environment interactions in human complex traits accurately with GE interaction summary statistics and full LD information
Dong Z, Jiang W, Li H, DeWan A, Zhao H. LDER-GE estimates phenotypic variance component of gene–environment interactions in human complex traits accurately with GE interaction summary statistics and full LD information. Briefings In Bioinformatics 2024, 25: bbae335. PMID: 38980374, PMCID: PMC11232466, DOI: 10.1093/bib/bbae335.Peer-Reviewed Original ResearchConceptsHuman complex traitsComplex traitsGene-environment interactionsGene-environmentLinkage disequilibriumPhenotypic variance componentsPhenotypic varianceProportion of phenotypic varianceSummary statisticsEuropean ancestry subjectsUK Biobank dataAssociation summary statisticsComplete linkage disequilibriumControlled type I error ratesLD informationLD matrixVariance componentsBiobank dataType I error rateEuropean ancestrySample size increaseGenetic effectsTraitsE-I pairsSimulation study
2021
Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes
Bi W, Zhou W, Dey R, Mukherjee B, Sampson J, Lee S. Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes. American Journal Of Human Genetics 2021, 108: 825-839. PMID: 33836139, PMCID: PMC8206161, DOI: 10.1016/j.ajhg.2021.03.019.Peer-Reviewed Original ResearchConceptsOrdinal categorical phenotypesGenome-wide association studiesCategorical phenotypesGenome-wide significant variantsRare variantsPhenotype distributionControlled type I error ratesType I error rateMixed model approachArray genotypingAssociation studiesCommon variantsQuantitative traitsSignificant variantsLogistic mixed modelsLack of analysis toolsUK BiobankLinear mixed model approachPhenotypeAssociation TestVariantsMixed modelsSignificance levelMAFTraits
2020
A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank
Bi W, Fritsche L, Mukherjee B, Kim S, Lee S. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. American Journal Of Human Genetics 2020, 107: 222-233. PMID: 32589924, PMCID: PMC7413891, DOI: 10.1016/j.ajhg.2020.06.003.Peer-Reviewed Original ResearchConceptsControlled type I error ratesTime-to-event data analysisType I error rateGenetic studies of human diseasesGenome-wide significance levelTime-to-event phenotypesSaddlepoint approximationGenome-wide analysisEuropean ancestry samplesMinor allele frequencyStudy of human diseaseElectronic health recordsCox PH regression modelRegression modelsStandard Wald testProportional hazardsBinary phenotypesData analysisAncestry samplesGenetic studiesHealth recordsUK BiobankAllele frequenciesInpatient dataCox proportional hazards
2019
A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank
Bi W, Zhao Z, Dey R, Fritsche L, Mukherjee B, Lee S. A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank. American Journal Of Human Genetics 2019, 105: 1182-1192. PMID: 31735295, PMCID: PMC6904814, DOI: 10.1016/j.ajhg.2019.10.008.Peer-Reviewed Original ResearchConceptsCase-control ratioGenome-wide significance levelMeasures of environmental exposureGenome-wide analysisEuropean ancestry samplesGenetic association studiesSaddlepoint approximationCase-control imbalanceAnalysis of phenotypesGene-environment interactionsPopulation-based biobanksControlled type I error ratesAssociation studiesG x E effectsUK BiobankType I error rateGenetic variantsE analysisSPAGEComplex diseasesEnvironmental exposuresTest statisticsE studySimulation studyWald test
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply