2018
Spectroscopic Compton imaging of prompt gamma emission at the MeV energy range
Chen H, Chen-Mayer HH, Turkoglu DJ, Riley BK, Draeger E, Polf JP. Spectroscopic Compton imaging of prompt gamma emission at the MeV energy range. Journal Of Radioanalytical And Nuclear Chemistry 2018, 318: 241-246. PMID: 31327884, PMCID: PMC6640867, DOI: 10.1007/s10967-018-6070-3.Peer-Reviewed Original ResearchGamma raysMulti-detector arrayCdZnTe detector arrayMeV energy rangeMeV gamma raysPrompt gamma emissionEnergy rangeCoincidence measurementsDetector arrayEmission linesCompton cameraMeV peakGamma emissionImage reconstruction methodPreliminary measurementsComptonMonte Carlo simulationsRaysTomographic approachImage reconstructionCarlo simulations
2017
Feasibility Studies of a New Event Selection Method to Improve Spatial Resolution of Compton Imaging for Medical Applications
Draeger E, Peterson S, Mackin D, Chen H, Beddar S, Polf J. Feasibility Studies of a New Event Selection Method to Improve Spatial Resolution of Compton Imaging for Medical Applications. IEEE Transactions On Radiation And Plasma Medical Sciences 2017, 1: 358-367. PMID: 28736766, PMCID: PMC5515251, DOI: 10.1109/trpms.2017.2703095.Peer-Reviewed Original ResearchPrototype Compton cameraProton radiotherapy beamsSpatial resolutionPoint sourcesAchievable spatial resolutionCompton equationEvent selection methodsRadiotherapy beamsEmission linesCompton cameraCompton ImagingCompton lineEnergy depositionExtended sourcesHalf maximumFull widthEnergy determinationInitial energyComptonLateral profilesSource positionMedical applicationsImaging methodReconstructed imagesEnergy
2006
Fast Monte Carlo Simulation Based Joint Iterative Reconstruction for Simultaneous 99mTc/123I Brain SPECT Imaging
Ouyang J, Fakhri G, Moore S, Kijewski M. Fast Monte Carlo Simulation Based Joint Iterative Reconstruction for Simultaneous 99mTc/123I Brain SPECT Imaging. 2006, 4: 2251-2256. DOI: 10.1109/nssmic.2006.354362.Peer-Reviewed Original ResearchMC-JOSEMAW-OSEMMonte CarloFast Monte CarloIterative reconstructionOrdered-subset expectation maximizationStandard ordered subsetsIterative reconstruction algorithmScattered photonsPhoton transportSeptal penetrationAttenuation distributionPhysical effectsIdentical physiological conditionsPatient-specific activityReconstructed imagesReconstruction algorithmActivity estimationComptonRoot mean square errorPhotonsCorrection methodCollimatorBrain perfusionDetector
1998
Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging.
Maksud P, Fertil B, Rica C, El Fakhri G, Aurengo A. Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging. Journal Of Nuclear Medicine 1998, 39: 735-45. PMID: 9544691.Peer-Reviewed Original ResearchConceptsEnergy spectrumCompton scatteringRadioactive sourcesImages of radioactive sourcesScatter correctionArtificial neural networkNeural networkNumerical Monte Carlo simulationsMonte Carlo simulationsPelvis scansIncident photonsMultilayer neural networkProjection imagesScatteringComptonCarlo simulationsDiffusion mediaSource distributionSpectrum acquisitionEnergyGeometric sourcesHomogeneous mediumCorrectionSpectraNetwork
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply