2025
Carfilzomib or bortezomib with lenalidomide, and dexamethasone (VRd) for initial therapy of newly diagnosed multiple myeloma (NDMM): Long-term follow-up of the ECOG-ACRIN ENDURANCE phase 3 trial.
Kumar S, Faber E, Cohen A, Callander N, Singh A, Parker T, Menter A, Yang X, Parsons B, Kumar P, Kapoor P, Aaron R, Zonder J, Anderson K, Lonial S, Richardson P, Orlowski R, Wagner L, Rajkumar S, Jacobus S. Carfilzomib or bortezomib with lenalidomide, and dexamethasone (VRd) for initial therapy of newly diagnosed multiple myeloma (NDMM): Long-term follow-up of the ECOG-ACRIN ENDURANCE phase 3 trial. Journal Of Clinical Oncology 2025, 43: 7540-7540. DOI: 10.1200/jco.2025.43.16_suppl.7540.Peer-Reviewed Original ResearchNewly diagnosed myelomaProgression free survivalPhase 3 trialTreatment of newly diagnosed myelomaMedian progression free survivalRandomized phase 3 trialNewly diagnosed multiple myelomaLong-term follow-upProteasome inhibitorsBortezomib (VPlasma cell leukemiaLong-term resultsIntent to transplantR-maintenanceOS probabilityMedian followFree survivalInduction regimenCell leukemiaMedian ageSurvival outcomesMultiple myelomaInitial treatmentBaseline characteristicsFollow-up
2024
HTLV-1 induces an inflammatory CD4+CD8+ T cell population in HTLV-1–associated myelopathy
Maher A, Aristodemou A, Giang N, Tanaka Y, Bangham C, Taylor G, Dominguez-Villar M. HTLV-1 induces an inflammatory CD4+CD8+ T cell population in HTLV-1–associated myelopathy. JCI Insight 2024, 9: e173738. PMID: 38193535, PMCID: PMC10906466, DOI: 10.1172/jci.insight.173738.Peer-Reviewed Original ResearchConceptsHTLV-1-associated myelopathyDP T cellsT cellsHTLV-1Double-positive T cellsAdult T-cell leukemiaT cell populationsT-cell tropismHTLV-1 infectionHuman T-cell leukemia virus type 1Virus type 1T-cell leukemiaCXCR3 expressionPreferential CD4Asymptomatic infectionCNS pathologyIL-6Asymptomatic carriersInflammatory diseasesCytotoxic phenotypeCell leukemiaCell tropismType 1CD4Cell populations
2022
Plasma cell leukemia: Retrospective review of cases at Monter Cancer Center/Northwell Health Cancer Institute, 2014-2019
Cotte C, Hartley-Brown M. Plasma cell leukemia: Retrospective review of cases at Monter Cancer Center/Northwell Health Cancer Institute, 2014-2019. Current Problems In Cancer 2022, 46: 100831. PMID: 35091270, DOI: 10.1016/j.currproblcancer.2021.100831.Peer-Reviewed Original ResearchConceptsPlasma cell leukemiaNew agentsOverall survivalMultiple myelomaTreatment regimensNovel therapiesCases of PCLTri-specific antibodiesOptimal therapeutic approachProspective clinical trialsDifferent treatment regimensSpecific treatment regimensFulminant coursePrognostic factorsRetrospective reviewImmunomodulatory drugsRetrospective studyAggressive malignancyCancer CenterDisease characteristicsTreatment advancesClinical trialsCell leukemiaTherapeutic approachesDiagnostic criteria
2021
Comprehensive Clinicopathologic and Molecular Analysis of Mast Cell Leukemia With Associated Hematologic Neoplasm: A Report and In-Depth Study of 5 Cases
Li P, Biancon G, Patel T, Pan Z, Kothari S, Halene S, Prebet T, Xu ML. Comprehensive Clinicopathologic and Molecular Analysis of Mast Cell Leukemia With Associated Hematologic Neoplasm: A Report and In-Depth Study of 5 Cases. Frontiers In Oncology 2021, 11: 730503. PMID: 34589432, PMCID: PMC8474637, DOI: 10.3389/fonc.2021.730503.Peer-Reviewed Original ResearchMast cell leukemiaAssociated hematologic neoplasmCell leukemiaHematologic neoplasmsAcute myeloid leukemiaPaucity of casesWhole-exome sequencingAdditional patientsCase seriesAggressive entityRare tumorMyeloid leukemiaAvailable tumorsComprehensive clinicopathologicLeukemiaPatientsNeoplasmsTumorsMolecular analysisClinicopathologicSequencing resultsCasesCorrection to: Hematopoietic cell transplantation utilization and outcomes for primary plasma cell leukemia in the current era
Dhakal B, Patel S, Girnius S, Bachegowda L, Fraser R, Davila O, Kanate AS, Assal A, Hanbali A, Bashey A, Pawarode A, Freytes CO, Lee C, Vesole D, Cornell RF, Hildebrandt GC, Murthy HS, Lazarus HM, Cerny J, Yared JA, Schriber J, Berdeja J, Stockerl-Goldstein K, Meehan K, Holmberg L, Solh M, Diaz MA, Kharfan-Dabaja MA, Farhadfar N, Bashir Q, Munker R, Olsson RF, Gale RP, Bayer RL, Seo S, Chhabra S, Hashmi S, Badawy SM, Nishihori T, Gonsalves W, Nieto Y, Efebera Y, Kumar S, Shah N, Qazilbash M, Hari P, D’Souza A. Correction to: Hematopoietic cell transplantation utilization and outcomes for primary plasma cell leukemia in the current era. Leukemia 2021, 35: 1828-1828. PMID: 33782538, PMCID: PMC8188513, DOI: 10.1038/s41375-021-01233-1.Peer-Reviewed Original Research
2020
IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells
Lee J, Robinson ME, Ma N, Artadji D, Ahmed MA, Xiao G, Sadras T, Deb G, Winchester J, Cosgun KN, Geng H, Chan LN, Kume K, Miettinen TP, Zhang Y, Nix MA, Klemm L, Chen CW, Chen J, Khairnar V, Wiita AP, Thomas-Tikhonenko A, Farzan M, Jung JU, Weinstock DM, Manalis SR, Diamond MS, Vaidehi N, Müschen M. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 2020, 588: 491-497. PMID: 33149299, PMCID: PMC8087162, DOI: 10.1038/s41586-020-2884-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19B-LymphocytesCell Transformation, NeoplasticFemaleGerminal CenterHumansIntegrinsMembrane MicrodomainsMembrane ProteinsMiceMice, Inbred C57BLMice, Inbred NODModels, MolecularPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphorylationReceptors, Antigen, B-CellRNA-Binding ProteinsSignal TransductionConceptsPI3KCell leukemiaAntiviral effector functionsAntigen-specific antibodiesInterferon-induced transmembrane proteinsIFITM3 functionDevelopment of leukemiaCell surfacePoor outcomeOncogenic PI3KClinical cohortEffector functionsGerminal centersMouse modelB cellsExpression of IFITM3Malignant transformationAccumulation of PIP3PI3K signalsCell receptorNormal numbersLeukemiaDefective expressionEndosomal proteinIFITM3Hematopoietic cell transplantation utilization and outcomes for primary plasma cell leukemia in the current era
Dhakal B, Patel S, Girnius S, Bachegowda L, Fraser R, Davila O, Kanate AS, Assal A, Hanbali A, Bashey A, Pawarode A, Freytes CO, Lee C, Vesole D, Cornell RF, Hildebrandt GC, Murthy HS, Lazarus HM, Cerny J, Yared JA, Schriber J, Berdeja J, Stockerl-Goldstein K, Meehan K, Holmberg L, Solh M, Diaz MA, Kharfan-Dabaja MA, Farhadfar N, Bashir Q, Munker R, Olsson RF, Gale RP, Bayer RL, Seo S, Chhabra S, Hashmi S, Badawy SM, Nishihori T, Gonsalves W, Nieto Y, Efebera Y, Kumar S, Shah N, Qazilbash M, Hari P, D’Souza A. Hematopoietic cell transplantation utilization and outcomes for primary plasma cell leukemia in the current era. Leukemia 2020, 34: 3338-3347. PMID: 32313109, PMCID: PMC7572530, DOI: 10.1038/s41375-020-0830-0.Peer-Reviewed Original ResearchConceptsPrimary plasma cell leukemiaHematopoietic cell transplantationKarnofsky performance statusPlasma cell leukemiaAllo-HCTPPCL patientsCell leukemiaNovel agent eraGood partial responseOutcomes of patientsHigh relapse rateAgent eraHCT utilizationSuperior OSPartial responsePerformance statusInferior survivalMedian ageRelapse rateCell transplantationSEER dataMortality 7Multi-variate analysisPatientsSurvival 17
2018
Primary plasma cell leukemia: autologous stem cell transplant in an era of novel induction drugs
Gowda L, Shah M, Badar I, Bashir Q, Shah N, Patel K, Kanagal-Shamanna R, Mehta R, Weber DM, Lee HC, Manasanch EE, Shah A, Thomas SK, Parmar S, Nieto Y, Orlowski RZ, Champlin R, Qazilbash MH. Primary plasma cell leukemia: autologous stem cell transplant in an era of novel induction drugs. Bone Marrow Transplantation 2018, 54: 1089-1093. PMID: 30446740, PMCID: PMC8393277, DOI: 10.1038/s41409-018-0392-1.Peer-Reviewed Original ResearchConceptsPrimary plasma cell leukemiaStem cell transplantMultiple myelomaCell transplantPost-autologous stem cell transplantAutologous stem cell transplantPoor long-term survivalPlasma cell leukemiaLong-term survivalInduction drugsCytotoxic chemotherapyAggressive variantTreatment algorithmNovel agentsCell leukemiaOutcomes postNovel drugsTransplantDrugsPosttransplantChemotherapyMyelomaTherapyLeukemiaAutoimmunity checkpoints as therapeutic targets in B cell malignancies
Müschen M. Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nature Reviews Cancer 2018, 18: 103-116. PMID: 29302068, DOI: 10.1038/nrc.2017.111.Peer-Reviewed Original Research
2016
CD25 Enables Oncogenic BCR Signaling and Represents a Therapeutic Target in Refractory B Cell Malignancies
Lee J, Geng H, Chen Z, Klemm L, Cosgun K, Xiao G, Masouleh B, Hurtz C, Parekh S, Kornblau S, Melnick A, Abbas A, Paietta E, Müschen M. CD25 Enables Oncogenic BCR Signaling and Represents a Therapeutic Target in Refractory B Cell Malignancies. Blood 2016, 128: 4088. DOI: 10.1182/blood.v128.22.4088.4088.Peer-Reviewed Original ResearchB-cell malignanciesB-cell tumorsB cell receptorPoor clinical outcomeCell tumorsCell malignanciesClinical outcomesCD25 expressionB-cell leukemiaT cellsClinical cohortCell leukemiaTherapeutic targetB cellsRefractory B-cell malignanciesCell receptorExpression levelsMultiple B-cell malignanciesTumor clonesRegulatory T cellsHigh expression levelsDivergent clinical outcomesBCR signalingHuman B-cell malignanciesB-cell lymphoma cells
2015
STAT5 antagonism of B cell superenhancer networks initiates progenitor B cell leukemia and predicts patient survival (HEM1P.222)
Farrar M, Katerndahl C, Heltemes Harris L, Willette M, Henzler C, Yang R, Silverstein K, Frietze S, Schjerven H, Ramsey L, Hubbard G, Muschen M, Kornblau S. STAT5 antagonism of B cell superenhancer networks initiates progenitor B cell leukemia and predicts patient survival (HEM1P.222). The Journal Of Immunology 2015, 194: 50.5-50.5. DOI: 10.4049/jimmunol.194.supp.50.5.Peer-Reviewed Original ResearchB cell developmentPatient outcomesB cellsB-cell acute lymphoblastic leukemiaProgenitor B cellsCell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaCell developmentDirect clinical relevanceB-cell leukemiaShort remissionsAggressive diseasePatient survivalLymphoblastic leukemiaTranscription factor STAT5Cell leukemiaClinical relevanceTranscriptional programsLeukemiaDegree of antagonismPre-BCRSurvivalSTAT5 activationMicroarray analysisSTAT5
2012
107 Multi-level Gene Expression Regulation Effects of the NAMPT Inhibitor FK866 in a Model of Acute T Cell Leukemia
Zucal C, D'Agostino V, Tebaldi T, Sociali G, Bruzzone S, Quattrone A, Nencioni A, Provenzani A. 107 Multi-level Gene Expression Regulation Effects of the NAMPT Inhibitor FK866 in a Model of Acute T Cell Leukemia. European Journal Of Cancer 2012, 48: 33-34. DOI: 10.1016/s0959-8049(12)71905-6.Peer-Reviewed Original ResearchBRAF mutation testing in clinical practice
Ziai J, Hui P. BRAF mutation testing in clinical practice. Expert Review Of Molecular Diagnostics 2012, 12: 127-138. PMID: 22369373, DOI: 10.1586/erm.12.1.Peer-Reviewed Original ResearchConceptsHairy cell leukemiaBRAF mutation testingPapillary thyroid carcinomaMalignant melanomaThyroid carcinomaCell leukemiaClinical practiceCutaneous malignant melanomaSerine/threonine-protein kinase BRAFCurrent clinical practiceImportant biological markerMEK/ERKTreatment paradigmClinical trialsHigh prevalenceBRAF inhibitorsBRAF mutationsMutation testingPrecision cancer therapyTherapeutic guidanceMutant BRAFLethal diseaseBiological markersCancerHuman cancers
2001
Separation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells
Allman D, Karnell F, Punt J, Bakkour S, Xu L, Myung P, Koretzky G, Pui J, Aster J, Pear W. Separation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells. Journal Of Experimental Medicine 2001, 194: 99-106. PMID: 11435476, PMCID: PMC2193437, DOI: 10.1084/jem.194.1.99.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone MarrowCell LineageDNA-Binding ProteinsHematopoietic Stem CellsHyaluronan ReceptorsLeukemia, T-CellMembrane ProteinsMiceMice, TransgenicReceptor, Notch1Receptors, Antigen, T-Cell, alpha-betaReceptors, Cell SurfaceReceptors, Interleukin-2Signal TransductionT-LymphocytesThymus GlandTranscription FactorsConceptsT lineage commitmentT cell developmentHematopoietic stem cellsLineage commitmentCell developmentSrc homology 2 domainPre-T cell receptorBone marrowT cell-specific signalsBM transferT cellsCell-specific signalsMultipotent progenitor cellsDouble-positive T cellsTCR-beta transgeneLeukocyte proteinBM cell populationsFunction of Notch1T-cell leukemiaLater time pointsCD3 epsilonActive Notch1Beta transgeneBM cellsCell leukemia
1993
Mice Transgenic for HTLV-I LTR-tax Exhibit Tax Expression in Bone, Skeletal Alterations, and High Bone Turnover
Ruddle N, Li C, Horn W, Santiago P, Troiano N, Jay G, Horowitz M, Baron R. Mice Transgenic for HTLV-I LTR-tax Exhibit Tax Expression in Bone, Skeletal Alterations, and High Bone Turnover. Virology 1993, 197: 196-204. PMID: 8212554, DOI: 10.1006/viro.1993.1580.Peer-Reviewed Original ResearchConceptsHigh bone turnoverHTLV-I infectionBone turnoverMice transgenicSkeletal alterationsAdult T-cell leukemiaMonths of ageSpindle-shaped cellsT-cell leukemiaBone cell activityPaget's diseaseViral etiologyOsteoclast numberBone resorptionPathogenetic mechanismsBone diseaseCell leukemiaBone marrowCell activitySkeletal changesTax mRNASevere skeletal abnormalitiesHost factorsDiseaseSkeletal abnormalities
1985
Natural killer lymphocytes in hairy cell leukemia: presence of phenotypically identifiable cells with defective functional activity.
Smith BR, Rosenthal DS, Ault KA. Natural killer lymphocytes in hairy cell leukemia: presence of phenotypically identifiable cells with defective functional activity. Experimental Hematology 1985, 13: 189-93. PMID: 3884356.Peer-Reviewed Original ResearchConceptsHairy cell leukemiaNK cellsNatural killerFluorescence-activated cell sorterNK activityNK functionCell leukemiaFunctional deficiencyNormal numbersPhenotypic NK cellsMajority of patientsStandard 51Cr releaseSevere functional deficiencyDefective functional activityK562 targetsNK populationPatientsSurface markersK562 cell lineFunctional activityCell populationsCell sorterCell linesLeukemiaIdentifiable cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply