2023
Ablation of SYK Kinase from Expanded Primary Human NK Cells via CRISPR/Cas9 Enhances Cytotoxicity and Cytokine Production.
Dahlvang J, Dick J, Sangala J, Kennedy P, Pomeroy E, Snyder K, Moushon J, Thefaine C, Wu J, Hamilton S, Felices M, Miller J, Walcheck B, Webber B, Moriarity B, Hart G. Ablation of SYK Kinase from Expanded Primary Human NK Cells via CRISPR/Cas9 Enhances Cytotoxicity and Cytokine Production. The Journal Of Immunology 2023, 210: 1108-1122. PMID: 36881874, PMCID: PMC10073313, DOI: 10.4049/jimmunol.2200488.Peer-Reviewed Original ResearchConceptsAb-dependent cellular cytotoxicityAdaptive NK cellsPrimary human NK cellsNK cellsHuman NK cellsCytokine productionFcRγ chainSHP-1Loss of sykTarget cell conjugationNK cell phenotypeReduced cytokine productionTNF-α productionCRISPR/Cas9 systemPhosphatase SHP-1Transcription factor PLZFCell conjugationCellular cytotoxicityImmune stateCD2 expressionSyk expressionLack expressionEnhances CytotoxicityCas9 systemEnhanced cytotoxicity
2018
CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis
Deniz E, Mis EK, Lane M, Khokha MK. CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis. Methods In Molecular Biology 2018, 1865: 163-174. PMID: 30151766, DOI: 10.1007/978-1-4939-8784-9_12.Peer-Reviewed Original ResearchConceptsCardiac developmentCRISPR/Candidate genesHigh-density SNP arrayCRISPR/Cas9 systemGenome editing technologyCongenital heart disease genesNew genomic technologiesHeart disease genesCopy number variationsRapid functional assayXenopus tropicalisCas9 systemGenetic basisDevelopmental systemsEditing technologyGenomic technologiesSequence variationDisease genesDifferent genesGenetic analysisSNP arrayDevelopmental mechanismsMolecular mechanismsWhole-exome sequencingDebugging the genetic code: non-viral in vivo delivery of therapeutic genome editing technologies
Piotrowski-Daspit AS, Glazer P, Saltzman WM. Debugging the genetic code: non-viral in vivo delivery of therapeutic genome editing technologies. Current Opinion In Biomedical Engineering 2018, 7: 24-32. PMID: 30984891, PMCID: PMC6456264, DOI: 10.1016/j.cobme.2018.08.002.Peer-Reviewed Original ResearchGenome editingNon-viral delivery methodsCRISPR/Cas9 systemGenome engineering technologiesGenome editing technologyTherapeutic genome editingPeptide nucleic acidSpecific cell typesGenetic codeVivo deliveryCas9 systemEditing technologyEfficient deliveryGenomic mutationsCell typesPolymeric vehiclesFuture outlookDisease phenotypePrecise technologyEngineering technologyDelivery methodsNucleic acidsCell culturesEditingHereditary disease
2017
Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish V, Jacob Y. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 2017, 93: 377-386. PMID: 29161464, DOI: 10.1111/tpj.13782.Peer-Reviewed Original ResearchConceptsCRISPR/Green fluorescent protein (GFP) reporter geneCRISPR/Cas9 systemFluorescent protein reporter geneCRISPR/Cas9Off-target mutationsArabidopsis plantsEukaryotic genomesDifferent organismsSomatic tissuesCitrus plantsCas9 systemDNA breaksReporter geneTarget mutagenesisTargeted mutationsMutation rateMutagenesisImportance of temperatureArabidopsisHeat stressPlantsMutationsQuantitative assayEukaryotes
2016
Genome Editing in Stem Cells
Tejwani L, Trujillo C, Thomas C, Muotri A. Genome Editing in Stem Cells. 2016, 287-309. DOI: 10.1007/978-3-319-30582-0_17.Peer-Reviewed Original ResearchGenome editingCRISPR/Cas9 systemPost-transcriptional levelPotential genetic therapyWild-type formStudy of geneticsGene functionGenetic functionsHuman genomeDeleterious mutationsParticular genesReverse geneticsCRISPR/Cas9 systemCellular phenomenaGenomeMolecular biologyCellular levelStem cellsEase of programmabilityMonogenic diseasesGenesEditingGeneticsSpecific modifications
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply