2025
Trio exome sequencing identifies de novo variants in novel candidate genes in 19.62% of CAKUT families
Merz L, Kolvenbach C, Wang C, Mertens N, Seltzsam S, Mansour B, Zheng B, Schneider S, Schierbaum L, Hölzel S, Salmanullah D, Pantel D, Kalkar G, Connaughton D, Mann N, Wu C, Kause F, Nakayama M, Dai R, Schneider R, Buerger F, Nicolas-Frank C, Yousef K, Lemberg K, Saida K, Yu S, Elmubarak I, Franken G, Lomjansook K, Braun A, Bauer S, Rodig N, Somers M, Traum A, Stein D, Daga A, Baum M, Daouk G, Awad H, Eid L, El Desoky S, Shalaby M, Kari J, Ooda S, Fathy H, Soliman N, Nabhan M, Abdelrahman S, Hilger A, Mane S, Ferguson M, Tasic V, Shril S, Hildebrandt F. Trio exome sequencing identifies de novo variants in novel candidate genes in 19.62% of CAKUT families. Genetics In Medicine 2025, 27: 101432. PMID: 40223730, DOI: 10.1016/j.gim.2025.101432.Peer-Reviewed Original ResearchCandidate genesExome sequencingDisease genesPotential novel candidate genesCandidate disease genesTrio-based exome sequencingDe novo variantsTrio exome sequencingDisease etiologyPathogenesis of CAKUTPotential novel causeTrio familiesTrio analysisMonogenic genesGenesNovel causeCHD1LSOX13VariantsTriosSequenceCongenital anomaliesHeterogeneous malformationUrinary tractCAKUTCharacterizing Rare DNA Copy-Number Variants in Pediatric Obsessive-Compulsive Disorder
Abdallah S, Olfson E, Cappi C, Greenspun S, Zai G, Rosário M, Willsey A, Shavitt R, Miguel E, Kennedy J, Richter M, Fernandez T. Characterizing Rare DNA Copy-Number Variants in Pediatric Obsessive-Compulsive Disorder. Journal Of The American Academy Of Child & Adolescent Psychiatry 2025 PMID: 40122455, DOI: 10.1016/j.jaac.2025.03.014.Peer-Reviewed Original ResearchCopy-number variantsWhole-exome DNA sequencingEXome-Hidden Markov ModelDetect copy-number variantsSingle-nucleotide variantsGenetic factorsWhole-exome sequencingExamination of genesBiological systems analysisTrio familiesDNA sequencesMicroarray dataOCD riskBurden analysisBiological processesGenesSequenceVariantsObsessive-compulsive disorderPrimary analysisXHMMPediatric obsessive-compulsive disorderCompared to controlsFamilySilico
2021
Trio family proteins as regulators of cell migration and morphogenesis in development and disease – mechanisms and cellular contexts
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease – mechanisms and cellular contexts. Journal Of Cell Science 2021, 134: jcs248393. PMID: 33568469, PMCID: PMC7888718, DOI: 10.1242/jcs.248393.Peer-Reviewed Original ResearchConceptsFamily proteinsCellular contextProtein-protein interaction domainsHuman diseasesProtein trafficking pathwaysLarge multidomain proteinCell surface receptorsTrio proteinsUNC-73Cell morphogenesisProtein traffickingTrafficking pathwaysMultidomain proteinsInteraction domainInteraction partnersKey regulatorBiological contextTissue organizationCell migrationSurface receptorsProteinTrio familiesRecent discoveryMorphogenesisRegulator
2017
Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders
Nguyen H, Bryois J, Kim A, Dobbyn A, Huckins L, Munoz-Manchado A, Ruderfer D, Genovese G, Fromer M, Xu X, Pinto D, Linnarsson S, Verhage M, Smit A, Hjerling-Leffler J, Buxbaum J, Hultman C, Sklar P, Purcell S, Lage K, He X, Sullivan P, Stahl E. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Medicine 2017, 9: 114. PMID: 29262854, PMCID: PMC5738153, DOI: 10.1186/s13073-017-0497-y.Peer-Reviewed Original ResearchConceptsProtein-protein interactionsDD risk genesRisk genesRisk-geneGene set enrichment resultsProtein-protein interaction subnetworksStudy of rare variationWhole-exome sequencing dataNeurodevelopmental disorder genesPost-transcriptional gene regulationExome sequencing dataSets of genesRare exonic variantsGene set enrichmentRare variationNeurodevelopmental disordersAutism spectrum disorderGene subnetworksGenetic architectureSequence dataRNA-seqTrio familiesGene regulationExonic variantsPathway enrichment
2009
Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor
Ban M, Goris A, Lorentzen Å, Baker A, Mihalova T, Ingram G, Booth DR, Heard RN, Stewart GJ, Bogaert E, Dubois B, Harbo HF, Celius EG, Spurkland A, Strange R, Hawkins C, Robertson NP, Dudbridge F, Wason J, De Jager PL, Hafler D, Rioux JD, Ivinson AJ, McCauley JL, Pericak-Vance M, Oksenberg JR, Hauser SL, Sexton D, Haines J, Sawcer S. Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. European Journal Of Human Genetics 2009, 17: 1309-1313. PMID: 19293837, PMCID: PMC2782567, DOI: 10.1038/ejhg.2009.41.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesNon-synonymous single nucleotide polymorphismsRecent genome-wide association studiesLevel of phosphorylationAmino acid substitutionsTyrosine kinase 2 geneKinase 2 geneSingle-nucleotide polymorphism resultsSingle nucleotide polymorphismsKinase domainMultiple sclerosis susceptibility genesAssociation studiesAcid substitutionsFunctional roleSusceptibility genesNucleotide polymorphismsPolymorphism resultsTrio familiesReplication analysisGenesLociTYK2Susceptibility factorsPhosphorylationMultiple sclerosis
2008
The expanding genetic overlap between multiple sclerosis and type I diabetes
Booth D, Heard R, Stewart G, Goris A, Dobosi R, Dubois B, Lorentzen Å, Celius E, Harbo H, Spurkland A, Olsson T, Kockum I, Link J, Hillert J, Ban M, Baker A, Sawcer S, Compston A, Mihalova T, Strange R, Hawkins C, Ingram G, Robertson N, De Jager P, Hafler D, Barcellos L, Ivinson A, Pericak-Vance M, Oksenberg J, Hauser S, McCauley J, Sexton D, Haines J. The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes & Immunity 2008, 10: 11-14. PMID: 18987646, PMCID: PMC2718424, DOI: 10.1038/gene.2008.83.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdultAllelesAmino Acid SubstitutionAntigens, Differentiation, T-LymphocyteAustraliaBelgiumCase-Control StudiesConfidence IntervalsDiabetes Mellitus, Type 1FamilyGenetic Predisposition to DiseaseHumansLectins, C-TypeLinkage DisequilibriumMiddle AgedMonosaccharide Transport ProteinsMultiple SclerosisNorwayOdds RatioPolymorphism, Single NucleotideProbabilitySwedenTryptophanUnited KingdomUnited StatesConceptsSingle nucleotide polymorphismsSusceptibility genesAutoimmune susceptibility genesMultiple sclerosis susceptibility genesClustering of autoimmune diseasesAssociated with type I diabetesTrio familiesCD226 geneEvidence of associationNucleotide polymorphismsCLEC16A geneGenetic overlapGenesMultiple sclerosis dataType I diabetesMultiple sclerosisAutoimmune diseasesFamilial clusteringRs12708716CLEC16ARs763361
2007
A second major histocompatibility complex susceptibility locus for multiple sclerosis
Yeo TW, De Jager PL, Gregory SG, Barcellos LF, Walton A, Goris A, Fenoglio C, Ban M, Taylor CJ, Goodman RS, Walsh E, Wolfish CS, Horton R, Traherne J, Beck S, Trowsdale J, Caillier SJ, Ivinson AJ, Green T, Pobywajlo S, Lander ES, Pericak‐Vance MA, Haines JL, Daly MJ, Oksenberg JR, Hauser SL, Compston A, Hafler DA, Rioux JD, Sawcer S. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Annals Of Neurology 2007, 61: 228-236. PMID: 17252545, PMCID: PMC2737610, DOI: 10.1002/ana.21063.Peer-Reviewed Original ResearchConceptsMajor histocompatibility complexMultiple sclerosisHLA-C geneHLA-DRB1 geneHuman leukocyte antigen (HLA) typingResidual associationHLA-DRB1 locusComplex susceptibility lociTight linkage disequilibriumControl subjectsAntigen typingProtective effectSclerosisClass II regionHistocompatibility complexHLA lociRisk haplotypeClassical HLA lociSingle nucleotide polymorphismsIndependent effectsChromosome 6p21AssociationNucleotide polymorphismsTrio familiesSusceptibility loci
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply