2024
Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol
Ghovanloo M, Effraim P, Tyagi S, Zhao P, Dib-Hajj S, Waxman S. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Communications Biology 2024, 7: 120. PMID: 38263462, PMCID: PMC10805714, DOI: 10.1038/s42003-024-05781-x.Peer-Reviewed Original ResearchConceptsDorsal root ganglionDorsal root ganglion neuronal excitabilityDorsal root ganglion neuronsNeuronal excitabilityCurrent-clamp analysisSteady-state inactivationVoltage-dependent sodiumSlow inactivated stateAutomated patch clamp platformMultielectrode array recordingsNav currentsNeuropathic painSodium currentRoot ganglionGanglion neuronsSlow inactivationInactivated stateCurrent inhibitorsIon channelsNeuronsInhibitory effectCannabinolArray recordingsEndocannabinoidCannabinoid
2009
A novel Nav1.7 mutation producing carbamazepine‐responsive erythromelalgia
Fischer TZ, Gilmore ES, Estacion M, Eastman E, Taylor S, Melanson M, Dib‐Hajj S, Waxman SG. A novel Nav1.7 mutation producing carbamazepine‐responsive erythromelalgia. Annals Of Neurology 2009, 65: 733-741. PMID: 19557861, PMCID: PMC4103031, DOI: 10.1002/ana.21678.Peer-Reviewed Original ResearchConceptsSteady-state inactivationDorsal root ganglion neuron hyperexcitabilityWhole-cell patch-clamp recordingsRamp currentsHuman therapeutic rangeWhole-cell patch-clamp studiesPatch-clamp recordingsPatch-clamp studiesErythromelalgia mutationV400MNeuron hyperexcitabilityNeuropathic painM cell lineNav1.7 mutationPainful disordersSympathetic neuronsTherapeutic rangeBlood samplesAnimal studiesNormalizing effectPharmacological studiesErythromelalgiaPainSodium channelsCarbamazepine
2003
Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito
Akar FG, Wu RC, Deschenes I, Armoundas AA, Piacentino V, Houser SR, Tomaselli GF. Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. AJP Heart And Circulatory Physiology 2003, 286: h602-h609. PMID: 14527940, DOI: 10.1152/ajpheart.00673.2003.Peer-Reviewed Original ResearchConceptsTransient outwardPhenotypic differencesKv channel-interacting proteinsIndependent transient outwardChannel-interacting proteinsProtein chemical techniquesSteady-state inactivationCanine ventricular myocytesWestern blot analysisElectrical remodelingChannel subunit genesMonoexponential time coursePharmacological sensitivityVentricular repolarizationCardiac diseaseElectrophysiological roleCanine ventricularHuman cardiac diseasePosttranslational modificationsVentricular myocytesSubunit genePharmacological propertiesDiseased heartPhenotypic propertiesOxidative stress
2001
Nav1.3 Sodium Channels: Rapid Repriming and Slow Closed-State Inactivation Display Quantitative Differences after Expression in a Mammalian Cell Line and in Spinal Sensory Neurons
Cummins TR, Aglieco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG. Nav1.3 Sodium Channels: Rapid Repriming and Slow Closed-State Inactivation Display Quantitative Differences after Expression in a Mammalian Cell Line and in Spinal Sensory Neurons. Journal Of Neuroscience 2001, 21: 5952-5961. PMID: 11487618, PMCID: PMC6763143, DOI: 10.1523/jneurosci.21-16-05952.2001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxotomyBiolisticsCells, CulturedGanglia, SpinalGene ExpressionGenes, ReporterHumansIon Channel GatingKidneyMaleMembrane PotentialsMutagenesis, Site-DirectedNeurons, AfferentPatch-Clamp TechniquesPolymerase Chain ReactionProtein SubunitsRatsReaction TimeSodiumSodium ChannelsSpinal CordTetrodotoxinConceptsNav1.3 channelsRapid reprimingHEK-293 cellsDRG neuronsTTX-sensitive sodium currentDorsal root ganglion neuronsNav1.3 sodium channelsSodium channelsSpinal sensory neuronsVoltage-gated sodium channelsSteady-state inactivationLarger ramp currentsHuman embryonic kidney 293 cellsPeripheral axotomyEmbryonic kidney 293 cellsGanglion neuronsSlow depolarizationSensory neuronsVoltage-dependent propertiesKidney 293 cellsSodium currentRamp currentsNav1.3NeuronsBeta2 subunitContribution of Nav1.8 Sodium Channels to Action Potential Electrogenesis in DRG Neurons
Renganathan M, Cummins T, Waxman S. Contribution of Nav1.8 Sodium Channels to Action Potential Electrogenesis in DRG Neurons. Journal Of Neurophysiology 2001, 86: 629-640. PMID: 11495938, DOI: 10.1152/jn.2001.86.2.629.Peer-Reviewed Original ResearchConceptsAction potential electrogenesisDRG neuronsSodium channelsAction potentialsTTX-R sodium channelsSodium-dependent action potentialsDorsal root ganglion neuronsMultiple sodium channelsSmall DRG neuronsCurrent-clamp recordingsNav1.8 sodium channelsSignificant differencesSteady-state inactivationAction potential overshootMaximum rise slopeMV/msAction potential productionFast TTXGanglion neuronsModest depolarizationNeuronsInput resistanceMembrane depolarizationInward membraneElectrogenesis
1998
Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel
Cummins T, Howe J, Waxman S. Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel. Journal Of Neuroscience 1998, 18: 9607-9619. PMID: 9822722, PMCID: PMC6793269, DOI: 10.1523/jneurosci.18-23-09607.1998.Peer-Reviewed Original ResearchConceptsTTX-S currentsRamp currentsDRG neuronsClosed-state inactivationSensory neuronsChannel isoformsDistinct integrative propertiesSmall DRG neuronsSodium channelsTTX-sensitive currentsSlow ramp depolarizationSteady-state inactivationRamp depolarizationNeuronsSkeletal muscleState inactivationIntegrative propertiesInactivation propertiesOpen-state inactivationExcitable cellsNovel mechanismCellsDepolarizationInactivationPN1
1997
TTX-Sensitive and -Resistant Na+ Currents, and mRNA for the TTX-Resistant rH1 Channel, Are Expressed in B104 Neuroblastoma Cells
Gu X, Dib-Hajj S, Rizzo M, Waxman S. TTX-Sensitive and -Resistant Na+ Currents, and mRNA for the TTX-Resistant rH1 Channel, Are Expressed in B104 Neuroblastoma Cells. Journal Of Neurophysiology 1997, 77: 236-246. PMID: 9120565, DOI: 10.1152/jn.1997.77.1.236.Peer-Reviewed Original ResearchConceptsB104 neuroblastoma cellsTTX-resistant channelsB104 cellsNeuroblastoma cellsWhole-cell patch-clamp methodAbsence of TTXTTX-resistant currentTTX-sensitive currentsPresence of TTXPA/pFTranscription-polymerase chain reactionLong QT syndromeCell linesSteady-state inactivationNeuroblastoma cell linesAlpha-subunit mRNAPatch-clamp methodTTX-sensitiveHalf-maximal inhibitionInactivation time constantsChannel mRNATTXMembrane excitabilitySubunit mRNAsRT-PCR
1996
Action potential-like responses in B 104 cells with low Na+ channel densities
Gu X, Waxman S. Action potential-like responses in B 104 cells with low Na+ channel densities. Brain Research 1996, 735: 50-58. PMID: 8905169, DOI: 10.1016/0006-8993(96)00604-x.Peer-Reviewed Original ResearchConceptsAction potential-like responsesB104 cellsWhole-cell patch-clamp methodB104 neuroblastoma cellsPA/pFCurrent-clamp modeSteady-state inactivationAction potential generationPatch-clamp methodMicroM TTXNeuroblastoma cellsPrepulse potentialPotential generationResponse amplitudeCellsResponseStimuli
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply