2024
154VP Usage of disease modifying therapies in spinal muscular atrophy and existing disparities: a population-based study from the MDA MOVR database
McLaren N, Joo D, Nowak R, Roy B. 154VP Usage of disease modifying therapies in spinal muscular atrophy and existing disparities: a population-based study from the MDA MOVR database. Neuromuscular Disorders 2024, 43: 104441.589. DOI: 10.1016/j.nmd.2024.07.598.Peer-Reviewed Original ResearchDisease modifying therapiesSpinal muscular atrophySurvival motor neuron 1Muscular Dystrophy AssociationModifying therapiesMuscular atrophyWhite Caucasian patientsSpinal muscular atrophy typesType 1 SMAType 2 SMALife saving therapyAlpha motor neuronsPopulation-based studyGroup of inherited neurodegenerative disordersCaucasian patientsZolgensmaNeuron 1Type 3 SMASpinal cordMuscle atrophyNusinersenPatientsTherapyMotor neuronsRisdiplamAntisense oligonucleotides and their applications in rare neurological diseases
McDowall S, Aung-Htut M, Wilton S, Li D. Antisense oligonucleotides and their applications in rare neurological diseases. Frontiers In Neuroscience 2024, 18: 1414658. PMID: 39376536, PMCID: PMC11456401, DOI: 10.3389/fnins.2024.1414658.Peer-Reviewed Original ResearchAntisense oligonucleotidesRare diseaseImpaired quality of lifeDuchenne muscular dystrophyRare neurological diseasesNeurological diseasesClinical trial designSpinal muscular atrophyRare conditionApplication of antisense oligonucleotidesHigh treatment costsTherapeutic antisense oligonucleotidesClinical trialsAnimal modelsMuscular dystrophyEffective treatmentQuality of lifeImpaired qualityMuscular atrophyAntisense oligomersTrial designTherapeutic validityTarget gene expressionDiseaseTreatment costsDisulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide
Moon M, Vock I, Streit A, Connor L, Senkina J, Ellman J, Simon M. Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide. ACS Chemical Biology 2024, 19: 2081-2086. PMID: 39192734, PMCID: PMC11683664, DOI: 10.1021/acschembio.4c00538.Peer-Reviewed Original ResearchCytochrome c oxidase 1Binding sitesRNA-small molecule interactionsPotential binding sitesTranscriptome-wide screeningSmall molecule disulfideSpinal muscular atrophyCellular RNARNA sitesTarget RNAMetabolic labelingSmall molecule bindingRNADisulfide analoguesLead moleculesMolecule bindingTranscriptomeFDA-approved drugsStructural probesMolecule interactionsCovalent attachmentDisulfide tetherThermodynamic propertiesTreat spinal muscular atrophyDisulfideEngineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches
Mohsen M, Midy M, Balaji A, Breaker R. Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches. ACS Chemical Biology 2024, 19: 1447-1452. PMID: 38954594, PMCID: PMC11267568, DOI: 10.1021/acschembio.4c00358.Peer-Reviewed Original ResearchRNA poolRiboswitch aptamerAptamer candidatesPaired elementsIn vitro selectionNatural riboswitchesHuntington's diseaseThiamine pyrophosphateAptamer developmentRiboswitchDrug candidatesAptamerStructural scaffoldBranaplamRNASpinal muscular atrophyImproved bindingTreat spinal muscular atrophySmall moleculesBioavailability characteristicsDissociation constantPseudoknotMuscular atrophyStructural elementsPoolSpinal Muscular Atrophy Update in Best Practices
Schroth M, Deans J, Arya K, Castro D, De Vivo D, Gibbons M, Ionita C, Kuntz N, Lakhotia A, Neil Knierbein E, Scoto M, Sejersen T, Servais L, Tian C, Waldrop M, Vázquez-Costa J. Spinal Muscular Atrophy Update in Best Practices. Neurology Clinical Practice 2024, 14: e200310. PMID: 38915908, PMCID: PMC11195435, DOI: 10.1212/cpj.0000000000200310.Peer-Reviewed Original ResearchSMA diagnosisHealth care providersBest practice recommendationsAdult-onset spinal muscular atrophySpinal muscular atrophy newborn screeningCare providersPractice recommendationsSkilled health care providersEuropean health care providersNewborn screeningSpinal muscular atrophyModified Delphi techniqueClassification of spinal muscular atrophyWorking GroupCommunity working groupSpecialty care centersPositive newborn screenDisease-modifying therapiesCaregiversDelphi techniqueCare centerSystematic literature reviewSurvival motor neuron 1Best practicesProviders
2023
Life-Saving Treatments for Spinal Muscular Atrophy: Global Access and Availability.
Armengol V, Darras B, Abulaban A, Alshehri A, Barisic N, Ben-Omran T, Bernert G, Castiglioni C, Chien Y, Farrar M, Kandawasvika G, Khadilkar S, Mah J, Marini-Bettolo C, Osredkar D, Pfeffer G, Piazzon F, Pitarch Castellano I, Quijano-Roy S, Saito K, Shin J, Vázquez-Costa J, Walter M, Wanigasinghe J, Xiong H, Griggs R, Roy B. Life-Saving Treatments for Spinal Muscular Atrophy: Global Access and Availability. Neurology Clinical Practice 2023, 14: e200224. PMID: 38107546, PMCID: PMC10723640, DOI: 10.1212/cpj.0000000000200224.Peer-Reviewed Original ResearchSurveyed health care providersProvider survey responsesHealth care providersSpinal muscular atrophyEconomic burdenNewborn screeningBarriers to treatmentMitigate such inequalitiesCare providersClinical careQualitative studyTreated patientsOutcome measuresMotor strengthGenetic testingSpinal muscular atrophy type 1Muscular atrophyProvidersSurvey responsesTreatment of spinal muscular atrophyLife-saving treatmentMuscle weaknessProgressive muscle weaknessNormal lifeTreatment costsP04 Taldefgrobep alfa: preclinical and clinical data supporting the phase 3 RESILIENT study in spinal muscular atrophy
Lair L, Qureshi I, Bechtold C, Heller L, Durham S, Campbell D, Marin J, Chen K, Coric V. P04 Taldefgrobep alfa: preclinical and clinical data supporting the phase 3 RESILIENT study in spinal muscular atrophy. Neuromuscular Disorders 2023, 33: s163. DOI: 10.1016/j.nmd.2023.07.381.Peer-Reviewed Original ResearchSpinal muscular atrophyMuscular atrophyClinical dataMuscle functionFlexor muscle functionMotor neuron lossRobust safety dataDownstream receptor signalingNon-ambulatory participantsAtrophic muscle fibersQuality of lifeSurvival motor neuron (SMN) proteinSMN upregulationMotor neuron geneNeuron lossMuscle weaknessSafety profileGastrocnemius weightPreclinical dataClinical studiesSafety dataMouse modelMuscle massNonclinical studiesMotor neuron proteinTudor–dimethylarginine interactions: the condensed version
Šimčíková D, Gelles-Watnick S, Neugebauer K. Tudor–dimethylarginine interactions: the condensed version. Trends In Biochemical Sciences 2023, 48: 689-698. PMID: 37156649, PMCID: PMC10524826, DOI: 10.1016/j.tibs.2023.04.003.Peer-Reviewed Original ResearchConceptsSurvival motor neuron (SMN) proteinTudor domainDiverse cellular functionsRNA-RNA interactionsSMN Tudor domainMotor neuron proteinCellular functionsProtein localizationProtein-RNASpinal muscular atrophyProtein ligandsNeuron proteinIntramolecular interactionsMuscular atrophyProteinInteractionFunctionLigandsModificationBiomolecularCellsLocalizationOpen questionDomainFormation
2021
Advances in Treatments in Muscular Dystrophies and Motor Neuron Disorders
Roy B, Griggs R. Advances in Treatments in Muscular Dystrophies and Motor Neuron Disorders. Neurologic Clinics 2021, 39: 87-112. PMID: 33223091, DOI: 10.1016/j.ncl.2020.09.005.Peer-Reviewed Original ResearchConceptsMotor neuron disordersMuscular dystrophyGene therapyTreatment of muscular dystrophiesNeuronal disordersDuchenne muscular dystrophySpinal muscular atrophyClinical trialsTherapyDystrophyTherapeutic promiseMuscular atrophyDisease pathophysiologyAmyotrophic lateral sclerosisNew drugsDrugLateral sclerosisDiseaseTreatmentCost burdenDisordersDrug technologyReview advancesIncreased understandingPathophysiology
2020
DYNC1H1‐related disorders: A description of four new unrelated patients and a comprehensive review of previously reported variants
Amabile S, Jeffries L, McGrath JM, Ji W, Spencer‐Manzon M, Zhang H, Lakhani SA. DYNC1H1‐related disorders: A description of four new unrelated patients and a comprehensive review of previously reported variants. American Journal Of Medical Genetics Part A 2020, 182: 2049-2057. PMID: 32656949, DOI: 10.1002/ajmg.a.61729.Peer-Reviewed Original ResearchConceptsSpinal muscular atrophyIntellectual disabilityUnrelated patientsSingle-center experienceNew unrelated patientsCenter experienceDYNC1H1 geneCNS disordersCombined disordersCortical developmentDisease-causing variantsVariable syndromeNeuromuscular diseaseNeuromuscular phenotypePatientsMuscular atrophyHeterozygous variantsDYNC1H1Medical literatureCharcot-MarieDisordersType 20Novel variantsPhenotypeReport
2018
Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping
Li D, Mastaglia F, Fletcher S, Wilton S. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping. Trends In Pharmacological Sciences 2018, 39: 982-994. PMID: 30282590, DOI: 10.1016/j.tips.2018.09.001.Peer-Reviewed Original ResearchConceptsSpinal muscular atrophyAntisense oligonucleotidesAntisense oligonucleotide-mediated exon skippingDuchenne MDTreat Duchenne muscular dystrophyExon skippingTherapeutic potential of antisense oligonucleotidesTargeted exon skippingPotential of antisense oligonucleotidesDuchenne muscular dystrophyPrecision medicineInherited rare diseaseClinical benefitRare diseaseMuscular dystrophyClinical implementationTherapeutic potentialMuscular atrophyAffected individualsAlternative splicingLethal mutationsDuchenneBecker casesExonMutations
2017
Motor Neuron Disease
Roy B, Darras B. Motor Neuron Disease. 2017, 199-220. DOI: 10.1007/978-3-319-61361-1_16.Peer-Reviewed Original ResearchNon-5q spinal muscular atrophySpinal muscular atrophyMotor neuronsSurvival motor neuronCompound motor action potential amplitudeProximal 5q SMAMotor action potential amplitudeMotor axon lossAction potential amplitudeMotor neuron diseaseSpinal motor neuronsProgressive muscle weaknessAutosomal recessive disorderHereditary degenerative disordersAxon lossImportant diagnostic toolMuscle weaknessNeuron diseaseClinical severityNeurogenic natureDisease prognosisAtypical casesPotential amplitudeMuscular atrophyDegenerative disordersThe importance of managing the patient and not the gene: expanded phenotype of GLE1-associated arthrogryposis
Tan Q, McConkie-Rosell A, Juusola J, Gustafson KE, Pizoli CE, Buckley AF, Jiang YH. The importance of managing the patient and not the gene: expanded phenotype of GLE1-associated arthrogryposis. Molecular Case Studies 2017, 3: a002063. PMID: 28729373, PMCID: PMC5701308, DOI: 10.1101/mcs.a002063.Peer-Reviewed Original ResearchConceptsAnterior horn cell diseaseCell diseasePathogenic variantsMotor neuron diseaseBiallelic missense mutationsSpinal muscular atrophyWhole-exome sequencingMotor weaknessRespiratory supportRespiratory difficultyNeuron diseaseMotor phenotypePerinatal periodPrenatal symptomsContracture syndromeMuscle biopsySevere formFetal akinesiaMuscular atrophyDiseaseMRNA exportLethal arthrogryposisTranslation initiationPerinatal lethalityArthrogryposis
2012
Human induced pluripotent stem cells and neurodegenerative disease
Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH. Human induced pluripotent stem cells and neurodegenerative disease. Current Opinion In Neurology 2012, 25: 125-130. PMID: 22357218, PMCID: PMC3786112, DOI: 10.1097/wco.0b013e3283518226.Peer-Reviewed Original ResearchConceptsNeurodegenerative diseasesReplacement therapyCell replacement therapyParkinson's diseasePositive therapeutic effectDisease modelsParkinson's disease modelAmyotrophic lateral sclerosisNeuron-specific transcription factorSpinal muscular atrophyStem cellsDrug screeningDopaminergic neuronsIntermediate cell typeTherapeutic effectEffective treatmentLateral sclerosisDisease-specific iPSCsMuscular atrophyAlzheimer's diseaseNeurodegenerative disordersCellular therapyDiseaseTherapyHuman induced pluripotent stem cells
2005
In Vitro Restoration of Functional SMN Protein in Human Trophoblast Cells Affected by Spinal Muscular Atrophy by Small Fragment Homologous Replacement
Sangiuolo F, Filareto A, Spitalieri P, Scaldaferri ML, Mango R, Bruscia E, Citro G, Brunetti E, De Felici M, Novelli G. In Vitro Restoration of Functional SMN Protein in Human Trophoblast Cells Affected by Spinal Muscular Atrophy by Small Fragment Homologous Replacement. Human Gene Therapy 2005, 16: 869-880. PMID: 16000068, DOI: 10.1089/hum.2005.16.869.Peer-Reviewed Original ResearchMeSH KeywordsCells, CulturedChorionic VilliCyclic AMP Response Element-Binding ProteinGene ExpressionGene TargetingGenotypeHumansImmunohistochemistryMicroinjectionsMuscular Atrophy, SpinalNerve Tissue ProteinsPhenotypePoint MutationRNA-Binding ProteinsSMN Complex ProteinsSurvival of Motor Neuron 1 ProteinSurvival of Motor Neuron 2 ProteinTransfectionTrophoblastsConceptsSmall fragment homologous replacementSMN proteinHomologous replacementFunctional SMN proteinExon 7SMN gene expressionFull-length SMN mRNASpinal muscular atrophyGene modification approachesDuplicate genesGenomic organizationMRNA maturationMotor neuron 1 geneGene expressionRNA dataHuman trophoblast cellsUntransfected controlsGenesTarget modificationProteinSMA cellsGenomeFetal chorionic villiReal-time polymerase chain reactionSMN2 geneIn Vitro Restoration of Functional SMN Protein in Human Trophoblast Cells Affected by Spinal Muscular Atrophy by Small Fragment Homologous Replacement
Sangiuolo F, Filareto A, Spitalieri P, Scaldaferri M, Mango R, Bruscia E, Citro G, Brunetti E, De Felici M, Novelli G. In Vitro Restoration of Functional SMN Protein in Human Trophoblast Cells Affected by Spinal Muscular Atrophy by Small Fragment Homologous Replacement. Human Gene Therapy 2005, 0: 050701034702010. DOI: 10.1089/hum.2005.16.ft-84.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply