2024
The genome organization of the Lake Magadi tilapia, Oreochromis Alcolapia grahami, a cichlid extremophile
Bernardi G, Kavembe G, Bergman H, Bucciarelli G, Wood C. The genome organization of the Lake Magadi tilapia, Oreochromis Alcolapia grahami, a cichlid extremophile. Journal Of Great Lakes Research 2024, 50: 102326. DOI: 10.1016/j.jglr.2024.102326.Peer-Reviewed Original ResearchGC-rich isochoresGC-rich regionBase compositionLake Magadi tilapiaGC-poorRepetitive elementsGC-rich genomic regionsGC-poor genomeRepetitive element analysisProtein coding genesGenomes of vertebratesMagadi tilapiaNile tilapiaGenome organizationGenome sequenceGC-richGenomic regionsCoding genesGenomeHot-waterNatural selectionAlcolapia grahamiFish speciesTilapiaCichlids
2013
Models of Somatic Hypermutation Targeting and Substitution Based on Synonymous Mutations from High-Throughput Immunoglobulin Sequencing Data
Yaari G, Vander Heiden J, Uduman M, Gadala-Maria D, Gupta N, Stern JN, O’Connor K, Hafler DA, Laserson U, Vigneault F, Kleinstein SH. Models of Somatic Hypermutation Targeting and Substitution Based on Synonymous Mutations from High-Throughput Immunoglobulin Sequencing Data. Frontiers In Immunology 2013, 4: 358. PMID: 24298272, PMCID: PMC3828525, DOI: 10.3389/fimmu.2013.00358.Peer-Reviewed Original ResearchAccurate background modelSynonymous mutationsNon-coding regionsParticular codon usageNon-functional sequencesComputational analysis methodsObserved mutation patternExisting modelsBackground modelInfluence of selectionCodon usageSHM targetingBase compositionImproved modelSequencing dataNucleotide substitutionsAnalysis methodStatistical analysisFunctional sequencesMutation targetingB-cell cancersModelSomatic hypermutation patternsMutationsHypermutation patterns
2000
High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells
Luo Z, Macris M, Faruqi A, Glazer P. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 9003-9008. PMID: 10900269, PMCID: PMC16811, DOI: 10.1073/pnas.160004997.Peer-Reviewed Original ResearchConceptsTriple helix-forming oligonucleotidesLtk- cell lineTK geneChromosomal lociIntrachromosomal gene conversionMouse Ltk- cell lineSingle chromosomal locusFunctional tk geneGene conversion eventsSite-specific recombinationSequence-specific mannerCell linesSimplex virus thymidine kinase geneVirus thymidine kinase geneHerpes simplex virus thymidine kinase geneThymidine kinase geneGene conversionIdentical base compositionMammalian cellsDownstream genesConversion eventsChromosomal sitesBase compositionKinase geneMutant copies
1997
Synonymous substitution rates in Drosophila: Mitochondrial versus nuclear genes
Moriyama E, Powell J. Synonymous substitution rates in Drosophila: Mitochondrial versus nuclear genes. Journal Of Molecular Evolution 1997, 45: 378-391. PMID: 9321417, DOI: 10.1007/pl00006243.Peer-Reviewed Original ResearchConceptsSynonymous substitution ratesHigher synonymous substitution ratesNuclear genesMitochondrial genesSubstitution ratesDivergence time estimatesBase composition biasNuclear genomeSynonymous ratesHeterogeneity of ratesRelated speciesCodon usageBase compositionComposition biasMutation rateGenesDrosophilaMtDNATime estimatesTurnover rateTransversionsGenomeSpeciesDivergenceSubstitution number
1994
The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium
Ochman H, Groisman EA. The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. EXS 1994, 69: 479-493. PMID: 7994120, DOI: 10.1007/978-3-0348-7527-1_27.Peer-Reviewed Original ResearchConceptsSpecies-specific sequencesSalmonella chromosomeEscherichia coliCodon usage patternsOpen reading frameHost epithelial cellsCommon ancestorMap positionPhenotypic charactersReading frameBase compositionHorizontal transferSalmonella typhimuriumMutant strainGenetic differencesEnteric speciesBacterial speciesGenomePoint mutationsPhenotypic characteristicsSpeciesCorresponding regionChromosomesSpecies differencesEpithelial cells
1993
Molecular, functional, and evolutionary analysis of sequences specific to Salmonella.
Groisman EA, Sturmoski MA, Solomon FR, Lin R, Ochman H. Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 1033-1037. PMID: 8430070, PMCID: PMC45805, DOI: 10.1073/pnas.90.3.1033.Peer-Reviewed Original ResearchConceptsAtypical base compositionIndependent evolutionary eventsPhenotypic characteristicsOpen reading frameLac gene fusionsWild-type parentLysR familyEvolutionary eventsDeletion strainEvolutionary analysisTranscriptional regulatorsReading frameSalmonella genomeNucleotide sequenceBase compositionHorizontal transferDNA fragmentsGene fusionsBacterial speciesEnteric bacteriaStructural similaritySpeciesVirulenceSequenceUnprecedented array
1992
Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome.
Groisman EA, Saier MH, Ochman H. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. The EMBO Journal 1992, 11: 1309-1316. PMID: 1339343, PMCID: PMC556579, DOI: 10.1002/j.1460-2075.1992.tb05175.x.Peer-Reviewed Original ResearchMeSH KeywordsAcid PhosphataseAmino Acid SequenceBase CompositionBase SequenceChromosomes, BacterialCloning, MolecularCodonDNAEscherichia coliGenes, BacterialGenome, BacterialMolecular Sequence DataMosaicismPhylogenyPlasmidsRestriction MappingSalmonella typhimuriumSequence Homology, Nucleic AcidTransfectionConceptsBase compositionPhoN geneNon-specific acid phosphatase activityAtypical base compositionSpacing of genesOverall base compositionNon-specific acid phosphataseCodon usage patternsGram-negative speciesChromosome sizeBacterial genomesPhosphatase geneKb regionSalmonella chromosomeSalmonella genomeGenetic basisHorizontal transferAcid phosphatase activityTrinucleotide frequenciesHigh similarityGenomeGenesEscherichia coliPhosphatase activityOriT region
1989
DNA DIVERGENCE AMONG HOMINOIDS
Caccone A, Powell J. DNA DIVERGENCE AMONG HOMINOIDS. Evolution 1989, 43: 925-942. PMID: 28564151, DOI: 10.1111/j.1558-5646.1989.tb02540.x.Peer-Reviewed Original ResearchSpecies of chimpanzeeDNA divergenceSingle-copy DNA divergenceGood molecular clockDivergence of humansClosest extant relativesProtein-coding regionsDNA-DNA hybridizationPatterns of relatednessSpecies of gibbonsSumatra populationsMolecular evolutionMolecular clockExtant relativesIntraspecific variationMost speciesOld World monkeysExtant membersDifferent taxaPhylogenetic conclusionsBase compositionMolecular evidenceBase pair mismatchesSpeciesWorld monkeys
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply