2021
Optic nerve regeneration screen identifies multiple genes restricting adult neural repair
Lindborg JA, Tran NM, Chenette DM, DeLuca K, Foli Y, Kannan R, Sekine Y, Wang X, Wollan M, Kim IJ, Sanes JR, Strittmatter SM. Optic nerve regeneration screen identifies multiple genes restricting adult neural repair. Cell Reports 2021, 34: 108777. PMID: 33657370, PMCID: PMC8009559, DOI: 10.1016/j.celrep.2021.108777.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCRISPR-Cas SystemsDependovirusFemaleGene EditingGene Expression RegulationGenetic Association StudiesHEK293 CellsHumansInterleukinsMaleMAP Kinase Kinase KinasesMice, Inbred C57BLMice, TransgenicNerve RegenerationNeurogenesisOptic NerveOptic Nerve InjuriesRetinal Ganglion CellsSignal TransductionSTAT3 Transcription FactorConceptsOptic nerve crushRetinal ganglion cellsRegeneration-associated genesShort hairpin RNAIL-22Neural repairCentral nervous system traumaNeurological deficits persistNervous system traumaNerve crushAxonal damageAxonal regenerationGanglion cellsSystem traumaInflammatory responseCNS regenerationDeficits persistAxonal growthHairpin RNAConcurrent activationTranscription 3Cell-autonomous factorsKinase pathwaySignal transducerRepair
2015
Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice
Fink KL, Strittmatter SM, Cafferty WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice. Journal Of Neuroscience 2015, 35: 15403-15418. PMID: 26586827, PMCID: PMC4649010, DOI: 10.1523/jneurosci.3165-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAmidinesAnalysis of VarianceAnimalsAxonsBiotinCrystallinsDextransDisease Models, AnimalFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinGPI-Linked ProteinsLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMu-CrystallinsMyelin ProteinsNerve RegenerationNogo Receptor 1Pyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSpinal Cord InjuriesConceptsCorticospinal tractCST axonsTransgenic miceMotor tractsDextran amineFunctional deficitsSpinal cordAxon regenerationSpinal Cord Injury StudySpontaneous axon regenerationSpinal cord traumaNogo receptor 1Permanent functional deficitsPersistent functional deficitsBilateral pyramidotomyDorsal hemisectionMidthoracic cordCord traumaMotor pathwaysAdult CNSCST regenerationInjury studiesLesion siteRegenerating fibersNeural repairPlasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury
Siegel CS, Fink KL, Strittmatter SM, Cafferty WB. Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal Of Neuroscience 2015, 35: 1443-1457. PMID: 25632122, PMCID: PMC4308593, DOI: 10.1523/jneurosci.3713-14.2015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDesigner DrugsFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinLocomotionMaleMiceMice, Inbred C57BLMice, TransgenicMuscle StrengthMyelin ProteinsNeuronal PlasticityNogo ProteinsPsychomotor DisordersPyramidal TractsRaphe NucleiRecovery of FunctionSpinal Cord InjuriesStereotyped BehaviorTime FactorsConceptsSpinal cord injurySpontaneous functional recoveryFunctional recoverySpontaneous recoveryIncomplete spinal cord injuryCorticospinal tract lesionsWeeks of lesionCorticospinal tract injuryNogo receptor 1Nucleus raphe magnusTract injuryRubrospinal projectionsTract lesionsCord injuryRaphe magnusCircuit rearrangementsAdult CNSCircuit plasticityLocomotor functionAdult micePharmacogenetic toolsRed nucleusRubral projectionReceptor 1Extensive sprouting
2014
Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5)*
Haas LT, Kostylev MA, Strittmatter SM. Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5)*. Journal Of Biological Chemistry 2014, 289: 28460-28477. PMID: 25148681, PMCID: PMC4192497, DOI: 10.1074/jbc.m114.584342.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseAmyloid beta-PeptidesAnimalsAntibodiesBinding SitesBiological AssayBrain ChemistryCell MembraneDisease Models, AnimalGene Expression RegulationHEK293 CellsHumansLigandsMiceMice, TransgenicPeptide MappingProtein BindingProtein Structure, TertiaryPrPC ProteinsReceptor, Metabotropic Glutamate 5Recombinant ProteinsSignal TransductionSmall Molecule LibrariesConceptsMetabotropic glutamate receptor 5Glutamate receptor 5Receptor 5Endogenous ligandMouse brainAD transgenic model miceCellular prion proteinAmino acids 91Transgenic model miceSoluble amyloid β (Aβ) oligomersAlzheimer's disease pathophysiologySilent allosteric modulatorsAgonists/antagonistsExtracellular AβOsMGluR5 activitySynthetic AβOsPrion proteinAmyloid-β OligomersModel miceCell membrane preparationsMGluR5Neurotoxic signalsBrain homogenatesAlzheimer's diseaseDisease pathophysiology
2012
Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation
Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain 2012, 135: 1794-1818. PMID: 22544872, PMCID: PMC3589918, DOI: 10.1093/brain/aws100.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnalysis of VarianceAnimalsAntibodiesAxonsCD3 ComplexCell Line, TumorDemyelinating DiseasesDisease Models, AnimalEncephalomyelitis, Autoimmune, ExperimentalFemaleGene Expression RegulationGlycoproteinsGPI-Linked ProteinsGreen Fluorescent ProteinsHumansImmunoprecipitationIntercellular Signaling Peptides and ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutMiddle AgedMultiple SclerosisMutationMyelin ProteinsMyelin-Oligodendrocyte GlycoproteinNerve DegenerationNerve Tissue ProteinsNeuroblastomaNeurofilament ProteinsNogo Receptor 1Optic NervePeptide FragmentsPhosphorylationReceptors, Cell SurfaceRetinal Ganglion CellsSeverity of Illness IndexSilver StainingSpinal CordTau ProteinsTime FactorsTransduction, GeneticTubulinConceptsExperimental autoimmune encephalomyelitisAutoimmune encephalomyelitisMyelin oligodendrocyte glycoproteinMultiple sclerosisAxonal degenerationSpinal cordChronic active multiple sclerosis lesionsOptic nerve axonal degenerationNogo-66 receptor 1CRMP-2Axonal growth inhibitorsCollapsin response mediator protein 2Improved clinical outcomesSpinal cord neuronsRetinal ganglion cellsResponse mediator protein 2Central nervous systemViable therapeutic targetAdeno-associated viral vectorMultiple sclerosis lesionsClinical outcomesOptic nerveCord neuronsOligodendrocyte glycoproteinGanglion cells
2009
Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord
Duffy P, Schmandke A, Schmandke A, Sigworth J, Narumiya S, Cafferty WB, Strittmatter SM. Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord. Journal Of Neuroscience 2009, 29: 15266-15276. PMID: 19955379, PMCID: PMC2855556, DOI: 10.1523/jneurosci.4650-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAnalysis of VarianceAnimalsAxonsBehavior, AnimalBrain InjuriesCA1 Region, HippocampalCells, CulturedCholera ToxinEnzyme InhibitorsGanglia, SpinalGene Expression RegulationMedian NeuropathyMiceMice, Inbred C57BLMice, KnockoutMyelin ProteinsNerve RegenerationNeuronsNogo ProteinsPyridinesReceptors, Calcitonin Gene-Related PeptideRhizotomyRho-Associated KinasesSpinal Cord InjuriesTime FactorsVersicansConceptsSpinal cordCNS traumaFunctional recoveryBasso Mouse Scale scoresSpinal Cord Injury StudyAxonal growthDorsal root entry zoneDorsal root ganglion neuronsAdult mouse spinal cordAxonal growth inhibitorsSpinal cord hemisectionRoot entry zoneSpinal cord injuryCaudal spinal cordMouse spinal cordDorsal hemisectionRaphespinal axonsDorsal rhizotomyCrush injuryCord hemisectionCorticospinal axonsChondroitin sulfate proteoglycanCord injuryGanglion neuronsInjury paradigmsInosine Alters Gene Expression and Axonal Projections in Neurons Contralateral to a Cortical Infarct and Improves Skilled Use of the Impaired Limb
Zai L, Ferrari C, Subbaiah S, Havton LA, Coppola G, Strittmatter S, Irwin N, Geschwind D, Benowitz LI. Inosine Alters Gene Expression and Axonal Projections in Neurons Contralateral to a Cortical Infarct and Improves Skilled Use of the Impaired Limb. Journal Of Neuroscience 2009, 29: 8187-8197. PMID: 19553458, PMCID: PMC2856695, DOI: 10.1523/jneurosci.0414-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBrain InfarctionCerebral CortexComplement C1qComplement C3Disease Models, AnimalExtremitiesFunctional LateralityGene Expression RegulationHeat-Shock ProteinsImmunohistochemistryInjections, IntraventricularInosineNeuronsOligonucleotide Array Sequence AnalysisProteasome Endopeptidase ComplexRatsRats, Sprague-DawleyRecovery of FunctionRNA, MessengerTreatment OutcomeUbiquitinationConceptsUndamaged neuronsSpinal cordSynaptic bouton-like structuresImpaired limbAlters gene expressionCorticospinal tract axonsSpecific cortical areasBouton-like structuresCortical infarctsCorticospinal neuronsDenervated sideUnaffected hemisphereAxon collateralsSensorimotor cortexBrain damageBrain injuryInjury modelLaser capture microdissectionAxonal projectionsGene expressionCortical areasDenervated halfComplement cascadeNeuronsAxon growthAn Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers
Linhoff MW, Laurén J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, Airaksinen MS, Strittmatter SM, Craig AM. An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers. Neuron 2009, 61: 734-749. PMID: 19285470, PMCID: PMC2746109, DOI: 10.1016/j.neuron.2009.01.017.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCells, CulturedCloning, MolecularCricetinaeCricetulusDisks Large Homolog 4 ProteinEmbryo, MammalianGene ExpressionGene Expression RegulationGene LibraryGenetic TestingGuanylate KinasesHippocampusHumansIntracellular Signaling Peptides and ProteinsLuminescent ProteinsMembrane PotentialsMembrane ProteinsMiceMice, KnockoutNeuronsPatch-Clamp TechniquesPDZ DomainsPresynaptic TerminalsRatsSynapsesTransfectionVesicular Glutamate Transport Protein 1ConceptsExpression screenSynaptogenic proteinsTrans-synaptic signalingDomain proteinsProtein familyTransmembrane proteinCDNA libraryMolecular basisSynaptogenic activityPresynaptic differentiationVesicular glutamate transporter VGLUT1Postsynaptic differentiationSynaptic organizersSynapse developmentPositive clonesCocultures of neuronsReported linkageLRRTMsCellular basisProteinGlutamate transporter VGLUT1LRRTM1Synaptic functionCurrent understandingAltered distribution
2003
Fibroblast Growth Factor-Inducible-14 Is Induced in Axotomized Neurons and Promotes Neurite Outgrowth
Tanabe K, Bonilla I, Winkles JA, Strittmatter SM. Fibroblast Growth Factor-Inducible-14 Is Induced in Axotomized Neurons and Promotes Neurite Outgrowth. Journal Of Neuroscience 2003, 23: 9675-9686. PMID: 14573547, PMCID: PMC6740475, DOI: 10.1523/jneurosci.23-29-09675.2003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxotomyGanglia, SpinalGene Expression ProfilingGene Expression RegulationHumansMaleMembrane ProteinsMiceMice, Inbred C57BLNerve RegenerationNeuritesNeuronsOligonucleotide Array Sequence AnalysisPC12 CellsPseudopodiaRac1 GTP-Binding ProteinRatsReceptors, Tumor Necrosis FactorRNA, MessengerSciatic NeuropathyTWEAK ReceptorConceptsFibroblast Growth Factor-Inducible 14Dorsal root gangliaDozens of genesDRG neuronsRho family GTPasesPC12 cellsGene expression patternsNeurite outgrowthAxotomized neuronsMRNA expression profilesPromotes Neurite OutgrowthNerve growth factor treatmentRac1 inactivationRac1 GTPaseExpression patternsExpression profilesMicroarray analysisAxotomized DRG neuronsOverexpression of Fn14Rac1 activationNorthern analysisSciatic nerve injurySciatic nerve transectionCoordinated shiftImmunoprecipitation studies
1992
GAP‐43 as a plasticity protein in neuronal form and repair
Strittmatter S, Vartanian T, Fishman M. GAP‐43 as a plasticity protein in neuronal form and repair. Developmental Neurobiology 1992, 23: 507-520. PMID: 1431834, DOI: 10.1002/neu.480230506.Peer-Reviewed Original ResearchConceptsGrowth cone membraneShort amino-terminal sequenceG proteinsCone membranePlasticity proteinsSpecific cellular domainsAmino-terminal sequenceMembrane localizationG-protein activityGAP-43Cellular domainsProtein activityCell shapeIntracellular proteinsActin filamentsBeta subunitRemarkable plasticityNeural developmentSuch plasticityTerminal sequenceProteinNeurite extensionGuanine nucleotidesNeurite growthAxonal extension