Kristopher Kahle, MD, PhD
Assistant Professor AdjunctCards
About
Research
Publications
2024
De novo variants disrupt an LDB1-regulated transcriptional network in congenital ventriculomegaly
Allington G, Mehta N, Dennis E, Mekbib K, Reeves B, Kiziltug E, Chen S, Zhao S, Duy P, Saleh M, Ang L, Fan B, Nelson-Williams C, Moreno-de-Luca A, Haider S, Lifton R, Alper S, McGee S, Jin S, Kahle K. De novo variants disrupt an LDB1-regulated transcriptional network in congenital ventriculomegaly. Brain 2024, awae395. PMID: 39680505, DOI: 10.1093/brain/awae395.Peer-Reviewed Original ResearchLIM interaction domainNeurodevelopmental disorder genesLIM homeodomain proteinsDe novo variantsIntegrative multiomic analysisRegulated assemblyTranscriptional regulationTranscriptional networksDisorder genesInteraction domainTranscriptional modulationTranscriptional programsMultiomics analysisLdb1Brain morphogenesisSignificant enrichmentDysmorphic featuresSignificance thresholdGenesCerebral ventriculomegalySMARCC1ARID1BCongenital hydrocephalusVariantsDevelopmental delayEmergent responsive neurostimulation in pediatric super‐refractory epilepsia partialis continua
Hadar P, Nanda P, Walsh K, McLaren J, Geffrey A, Simon M, Kahle K, Richardson R, Chu C. Emergent responsive neurostimulation in pediatric super‐refractory epilepsia partialis continua. Annals Of Clinical And Translational Neurology 2024 PMID: 39540465, DOI: 10.1002/acn3.52199.Peer-Reviewed Original ResearchGenetics and molecular pathophysiology of normal pressure hydrocephalus.
Mehta N, Maury E, Buller Z, Duy P, Fortes C, Alper S, Erson-Omay E, Kahle K. Genetics and molecular pathophysiology of normal pressure hydrocephalus. Journal Of Neurosurgery 2024, 1-7. PMID: 39178477, DOI: 10.3171/2024.5.jns24980.Peer-Reviewed Original ResearchIdiopathic normal pressure hydrocephalusNormal pressure hydrocephalusPathophysiology of idiopathic normal pressure hydrocephalusIntegrative genetic analysisPressure hydrocephalusPathophysiology of normal pressure hydrocephalusGenomic studiesGenetic analysisGenetic insightsUrinary incontinenceSurgical interventionCerebral ventricleClinical studiesFamilial casesMolecular pathophysiologyCSF dynamicsDisease pathogenesisNeuroinflammatory processesCerebral pressureHydrocephalusGeneticsCognitive impairmentDysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus
Bertino F, Mukherjee D, Bonora M, Bagowski C, Nardelli J, Metani L, Venturini D, Chianese D, Santander N, Salaroglio I, Hentschel A, Quarta E, Genova T, McKinney A, Allocco A, Fiorito V, Petrillo S, Ammirata G, De Giorgio F, Dennis E, Allington G, Maier F, Shoukier M, Gloning K, Munaron L, Mussano F, Salsano E, Pareyson D, di Rocco M, Altruda F, Panagiotakos G, Kahle K, Gressens P, Riganti C, Pinton P, Roos A, Arnold T, Tolosano E, Chiabrando D. Dysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus. Cell Reports Medicine 2024, 5: 101647. PMID: 39019006, PMCID: PMC11293339, DOI: 10.1016/j.xcrm.2024.101647.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusCalcium handlingNeural progenitor cellsMitochondrial calcium handlingMouse neural progenitor cellsFLVCR1 geneMitochondrial calcium levelsVentricular dilatationLive birthsCalcium levelsProgenitor cellsClinical challengeVentricle enlargementPathogenetic mechanismsSevere formCortical neurogenesisNeural progenitorsFLVCR1aMitochondria-associated membranesHydrocephalusMiceFLVCR1CH genesMolecular mechanismsMetabolic activityPathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics
DeSpenza T, Singh A, Allington G, Zhao S, Lee J, Kiziltug E, Prina M, Desmet N, Dang H, Fields J, Nelson-Williams C, Zhang J, Mekbib K, Dennis E, Mehta N, Duy P, Shimelis H, Walsh L, Marlier A, Deniz E, Lake E, Constable R, Hoffman E, Lifton R, Gulledge A, Fiering S, Moreno-De-Luca A, Haider S, Alper S, Jin S, Kahle K, Luikart B. Pathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2314702121. PMID: 38916997, PMCID: PMC11228466, DOI: 10.1073/pnas.2314702121.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusCerebral ventriculomegalyPathogenic variantsPrefrontal pyramidal neuronsGenetic subsets of patientsDevelopment of ventriculomegalyRadial gliaSubsets of patientsHigh-frequency firingNeuronal connectivityHeterozygous germline variantsAutism spectrum disorderVentricular-subventricular zoneMicrotubule dynamicsImpaired spermatogenesisCSF shuntingExcitatory driveMicrotubule-severing ATPasePyramidal neuronsDisrupt neuronal connectivityGermline variantsVentriculomegalyCSF homeostasisDisrupt microtubule dynamicsPlanar cell polarityAXIN1 mutations in nonsyndromic craniosynostosis.
Timberlake A, Hemal K, Gustafson J, Hao L, Valenzuela I, Slavotinek A, Cunningham M, Kahle K, Lifton R, Persing J. AXIN1 mutations in nonsyndromic craniosynostosis. Journal Of Neurosurgery Pediatrics 2024, 34: 246-251. PMID: 38905707, PMCID: PMC11200303, DOI: 10.3171/2024.5.peds24115.Peer-Reviewed Original ResearchSequence dataAXIN1 mutationsCase-parent triosGenome-wide significanceCS casesNonsyndromic CSGenome sequencing projectsWnt signalingExome sequencing dataRNA sequencing dataPhenotypes associated with mutationsSequencing projectsGenetic testingInhibitor of Wnt signalingLive birthsNonsyndromic casesGenetic etiologyGenetic causeCS patientsAXIN1Nonsyndromic craniosynostosisMutationsHealthy controlsBirth defectsExomeTRIM71 mutations cause a neurodevelopmental syndrome featuring ventriculomegaly and hydrocephalus
Duy P, Jux B, Zhao S, Mekbib K, Dennis E, Dong W, Nelson-Williams C, Mehta N, Shohfi J, Juusola J, Allington G, Smith H, Marlin S, Belhous K, Monteleone B, Schaefer G, Pisarska M, Vásquez J, Estrada-Veras J, Keren B, Mignot C, Flore L, Palafoll I, Alper S, Lifton R, Haider S, Moreno-De-Luca A, Jin S, Kolanus W, Kahle K. TRIM71 mutations cause a neurodevelopmental syndrome featuring ventriculomegaly and hydrocephalus. Brain 2024, awae175. PMID: 38833623, DOI: 10.1093/brain/awae175.Peer-Reviewed Original ResearchCongenital hydrocephalusCerebral ventriculomegalyStructural brain defectsCohort of patientsAnalysis of human embryosNeurodevelopmental syndromeCorpus callosum dysgenesisWhite matter hypoplasiaSingle-cell transcriptome analysisNeural stem cellsDysmorphic featuresTransmitted variantsPatient cohortVentriculomegalyNHL domainCross-sectional analysisLin-41Subcellular localizationBrain defectsDevelopmental delayHuman embryosProcessing bodiesHomologous positionsPatientsStem cellsBiomechanical instability of the brain–CSF interface in hydrocephalus
Duy P, Mehta N, Kahle K. Biomechanical instability of the brain–CSF interface in hydrocephalus. Brain 2024, 147: 3274-3285. PMID: 38798141, PMCID: PMC11449143, DOI: 10.1093/brain/awae155.Peer-Reviewed Original ResearchBrain-CSF interfaceBrain parenchymaPost-hemorrhagic hydrocephalusLow intracranial pressureAbnormal biomechanical propertiesNormal pressure hydrocephalusPost-infectiousCongenital hydrocephalusImpaired neurodevelopmentCommunicating hydrocephalusCSF homeostasisBiomechanical instabilityHydrocephalusIntracranial pressureAnimal studiesPressure hydrocephalusArachnoid granulationsPrimary derangementBrain surgeryStudy of hydrocephalusAge groupsCSF reabsorptionVentriculomegalyVentricleSecondary enlargementPaediatric hydrocephalus
Kahle K, Klinge P, Koschnitzky J, Kulkarni A, MacAulay N, Robinson S, Schiff S, Strahle J. Paediatric hydrocephalus. Nature Reviews Disease Primers 2024, 10: 35. PMID: 38755194, DOI: 10.1038/s41572-024-00519-9.Peer-Reviewed Original ResearchConceptsSymptoms of elevated intracranial pressureCerebrospinal fluidCentral nervous system infectionChoroid plexus cauterizationEndoscopic third ventriculostomyNervous system infectionNonsurgical treatment strategiesElevated intracranial pressureLong-term outcomesNeural tube defectsCSF-brain interfaceFetal hydrocephalusUtero treatmentAcquired hydrocephalusCSF secretionSurgical closureCSF shuntingHead circumferenceThird ventriculostomyCongenital hydrocephalusAssociated with blockageGene mutationsCerebral ventricleTreatment strategiesCSF pathwaysAlgebraic Nexus of Fibonacci Forms and Two-Simplex Topology in Multicellular Morphogenesis
Hoyos W, Loarca H, Kahle K, Williams Z, Lamb E, Alcántara J, Kinane T, Cuevas L. Algebraic Nexus of Fibonacci Forms and Two-Simplex Topology in Multicellular Morphogenesis. Symmetry 2024, 16: 516. DOI: 10.3390/sym16050516.Peer-Reviewed Original ResearchMulticellular organismsCellular growth propertiesMulticellular morphogenesisInhibition of replicationSynthetic biologyMulticellular structuresTubular formContact inhibitionMolecular mechanismsCellular aggregatesGrowth propertiesMorphogenesisMultiple stepsFibonacci patternCell replicationReplicationCellular genesisCellsCellular arrangementPhylogenyGrowth patternMolecular propertiesAdhesionOrganizationMechanism
Clinical Trials
Current Trials
Pediatric Genomics Discovery Program (PGDP)
HIC ID1411014977RoleSub InvestigatorPrimary Completion Date12/31/2023Recruiting ParticipantsGenderBoth
News
News
- July 28, 2021
New Study Identifies Key Gene Correlated With Pediatric Stroke
- November 03, 2020
Yale Scientists Identify New Genes Related to Congenital Hydrocephalus
- February 17, 2020
New Drugs on the Horizon for Stroke and Hydrocephalus
- October 21, 2019
Molecular Control of Neurotransmitter Linked to Autism Described