2016
Exploration of the Peptide Recognition of an Amiloride-sensitive FMRFamide Peptide-gated Sodium Channel*
Niu Y, Yang Y, Liu Y, Huang L, Yang X, Fan Y, Cheng X, Cao P, Hu Y, Li L, Lu X, Tian Y, Yu Y. Exploration of the Peptide Recognition of an Amiloride-sensitive FMRFamide Peptide-gated Sodium Channel*. Journal Of Biological Chemistry 2016, 291: 7571-7582. PMID: 26867576, PMCID: PMC4817185, DOI: 10.1074/jbc.m115.710251.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCHO CellsCricetinaeCricetulusHEK293 CellsHumansIon Channel GatingPeptidesProtein Structure, TertiarySodium Channels
2014
Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation
Zhao W, Wang J, Ma X, Yang Y, Liu Y, Huang L, Fan Y, Cheng X, Chen H, Wang R, Yu Y. Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation. Nature Communications 2014, 5: 4189. PMID: 24943126, DOI: 10.1038/ncomms5189.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAllosteric RegulationAmino Acid MotifsAnimalsHydrophobic and Hydrophilic InteractionsModels, MolecularProtein Structure, TertiaryRatsReceptors, Purinergic P2X4ConceptsAllosteric changesChannel gatingLeft flipperP2X4 receptorDorsal fin domainAllosteric eventsP2X4 receptor activationPhysiological functionsResidues leadFin domainHydrophobic interactionsEssential roleExtracellular ATPFundamental processesZinc bridgesChannel activationReceptor activationDorsal finP2X receptorsReceptorsGatingDomainActivationL217V291Inherent Dynamics of Head Domain Correlates with ATP-Recognition of P2X4 Receptors: Insights Gained from Molecular Simulations
Huang L, Fan Y, Tian Y, Yang Y, Liu Y, Wang J, Zhao W, Zhou W, Cheng X, Cao P, Lu X, Yu Y. Inherent Dynamics of Head Domain Correlates with ATP-Recognition of P2X4 Receptors: Insights Gained from Molecular Simulations. PLOS ONE 2014, 9: e97528. PMID: 24878662, PMCID: PMC4039465, DOI: 10.1371/journal.pone.0097528.Peer-Reviewed Original Research
2009
Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties
Cheng X, Pachuau J, Blaskova E, Asuncion-Chin M, Liu J, Dopico A, Jaggar J. Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties. AJP Heart And Circulatory Physiology 2009, 297: h680-h688. PMID: 19502562, PMCID: PMC2724194, DOI: 10.1152/ajpheart.00109.2009.Peer-Reviewed Original ResearchAlternative SplicingAmino Acid SequenceAnimalsBase SequenceCalcium Channels, L-TypeCells, CulturedCerebral ArteriesCerebrovascular CirculationExonsMolecular Sequence DataMuscle, Smooth, VascularMyocytes, Smooth MusclePatch-Clamp TechniquesProtein Structure, TertiaryRatsRats, Sprague-DawleyVascular Resistance
2007
A Novel CaV1.2 N Terminus Expressed in Smooth Muscle Cells of Resistance Size Arteries Modifies Channel Regulation by Auxiliary Subunits*
Cheng X, Liu J, Asuncion-Chin M, Blaskova E, Bannister J, Dopico A, Jaggar J. A Novel CaV1.2 N Terminus Expressed in Smooth Muscle Cells of Resistance Size Arteries Modifies Channel Regulation by Auxiliary Subunits*. Journal Of Biological Chemistry 2007, 282: 29211-29221. PMID: 17699517, PMCID: PMC2276565, DOI: 10.1074/jbc.m610623200.Peer-Reviewed Original ResearchConceptsExon 1cN-terminusExon 1bAuxiliary subunitsRich N-terminusCysteine-rich N-terminusNovel alternative splicingResistance-size cerebral arteriesPlasma membrane insertionExon 1Arterial myocytesMultiple vascular functionsIsoform-dependent differencesWhole-cell current densityN-terminal variantsAlternative splicingMembrane insertionChannel regulationExon 1AMolecular identityHuman diseasesSubunitsTerminusEntry pathwaySmooth muscle cells