2024
Using in vivo intact structure for system-wide quantitative analysis of changes in proteins
Son A, Kim H, Diedrich J, Bamberger C, McClatchy D, Lipton S, Yates J. Using in vivo intact structure for system-wide quantitative analysis of changes in proteins. Nature Communications 2024, 15: 9310. PMID: 39468068, PMCID: PMC11519357, DOI: 10.1038/s41467-024-53582-x.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseProtein footprinting methodGlobal expression profilingIn vivo conformationStructural alterations of proteinsCo-expressed proteinsMass spectrometry-based methodsAlterations of proteinsProteostasis dysfunctionSpectrometry-based methodsProtein misfoldingConformation of proteinsStructural changesLysine residuesDynamic structural changesBiological functionsProteomics experimentsDimethyl labelingExpression profilesProtein conformationConformational changesProteinIntact proteinDesign of therapeutic interventionsMeasuring dynamic structural changes
2023
Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer’s disease: Mechanistic insights and potential therapies
Ghatak S, Nakamura T, Lipton S. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer’s disease: Mechanistic insights and potential therapies. Frontiers In Neural Circuits 2023, 17: 1099467. PMID: 36817649, PMCID: PMC9932935, DOI: 10.3389/fncir.2023.1099467.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseSynaptic damageReactive oxygen speciesS-nitrosylation contributesNeuronal hyperactivitySynaptic lossSynapse lossSynaptic degenerationCommon causePotential therapyAD modelCognitive declineHyperexcitabilityDiseaseSingle neuronsActivity contributesMolecular changesProtein S-nitrosylationDeleterious effectsNeural network functionS-nitrosylationOxygen speciesEarly signaturesPatientsTherapy
2022
Mechanistic insight into female predominance in Alzheimer’s disease based on aberrant protein S-nitrosylation of C3
Yang H, Oh C, Amal H, Wishnok J, Lewis S, Schahrer E, Trudler D, Nakamura T, Tannenbaum S, Lipton S. Mechanistic insight into female predominance in Alzheimer’s disease based on aberrant protein S-nitrosylation of C3. Science Advances 2022, 8: eade0764. PMID: 36516243, PMCID: PMC9750152, DOI: 10.1126/sciadv.ade0764.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseAD brainPostmortem Alzheimer's diseaseComplement component 3Sex-dependent mannerConsequent cognitive declineSynaptic phagocytosisΒ-estradiol levelsFemale predominanceAberrant protein S-nitrosylationSynaptic damageAD pathogenesisSNO proteinsCognitive declineProtein SDiseaseRobust alterationsBrainComponent 3Protein S-nitrosylationHuman brainS-nitrosylationS-nitrosoproteomePatientsPathogenesisHidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease
Lipton S. Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease. Free Radical Biology And Medicine 2022, 193: 171-176. PMID: 36243209, PMCID: PMC9875813, DOI: 10.1016/j.freeradbiomed.2022.10.272.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseParkinson's diseaseNitric oxideSoluble guanylate cyclaseFormation of peroxynitriteSynapse lossNeurocognitive disordersNeurological disordersDiseaseGuanylate cyclaseNeurodevelopmental disordersDisordersProtein S-nitrosylationSuperoxide anionTyrosine nitrationS-nitrosylationHIVS-nitrosationPathogenesisDementiaTowards development of disease-modifying therapy for Alzheimer's disease using redox chemical biology pathways
Lipton S. Towards development of disease-modifying therapy for Alzheimer's disease using redox chemical biology pathways. Current Opinion In Pharmacology 2022, 66: 102267. PMID: 35870288, PMCID: PMC9509422, DOI: 10.1016/j.coph.2022.102267.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseDisease-modifying therapiesPotential therapeutic efficacySevere side effectsPotential therapeutic targetCerebral organoid modelTranscription factor Nrf2Absence of diseaseNMDA typeGlutamate receptorsDisease processSide effectsTherapeutic targetTransgenic miceTherapeutic efficacyNeurodegenerative disordersNormal tissuesDiseaseFactor Nrf2Organoid modelsProtein S-nitrosylationS-nitrosylationProtein Keap1TherapyNrf2S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders
Kim K, Cho E, Eom J, Oh S, Nakamura T, Oh C, Lipton S, Kim Y. S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders. Cell Death & Differentiation 2022, 29: 2137-2150. PMID: 35462559, PMCID: PMC9613756, DOI: 10.1038/s41418-022-01004-0.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseAnimalsCathepsin BCysteineHumansMiceNeurodegenerative DiseasesNitric OxideProtein AggregatesProteinsConceptsS-nitrosylationProtein aggregatesAutophagic fluxProtein S-nitrosylationBlocks autophagic fluxCathepsin BCaspase-dependent neuronal apoptosisPosttranslational modificationsProtease cathepsin BEnzymatic functionLysosomal protease cathepsin BCTSB activityChemical inhibitorsCA-074MeHuman AD brainsEnzymatic activityCysteineNeurodegenerative disordersPostmortem human AD brainTransgenic miceNeuronal apoptosisCTSBAccumulationAD pathogenesisAlzheimer's disease
2021
Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases
Trudler D, Ghatak S, Lipton S. Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. International Journal Of Molecular Sciences 2021, 22: 8196. PMID: 34360966, PMCID: PMC8347370, DOI: 10.3390/ijms22158196.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseDrug DiscoveryHumansInduced Pluripotent Stem CellsNeuroprotective AgentsPrecision MedicineConceptsAmyotrophic lateral sclerosisNeurodegenerative diseasesParkinson's diseaseAnimal modelsAlzheimer's diseaseEffective disease-modifying therapiesHuntington's diseaseDisease-modifying therapiesSeverity of symptomsHuman samplesHiPSC-derived neural cellsHealthy donorsEffective treatmentLateral sclerosisEconomic burdenHuman-induced pluripotent stem cell (hiPSC) technologyProgressive deteriorationNeural functionDiseaseHiPSC modelsNeural cellsPluripotent stem cell (iPSC) technologyDisease mechanismsPoor accessMillions of people
2019
Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls
Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, Ambasudhan R, Talantova M, Lipton S. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. ELife 2019, 8: e50333. PMID: 31782729, PMCID: PMC6905854, DOI: 10.7554/elife.50333.Peer-Reviewed Original ResearchConceptsDisease brainNeuronal culturesHuman Alzheimer's disease brainCerebral organoidsAD-related mutationsHiPSC-derived neuronsTransgenic AD miceInhibitory synaptic activityMechanisms of hyperexcitabilityAlzheimer's disease brainAberrant electrical activitySodium current densityAD micePathophysiological correlatesSynaptic dysfunctionAD pathophysiologyExcessive excitabilitySynaptic activityObserved hyperexcitabilityCognitive declineBursting activityHyperexcitabilityPresenilin 1Electrical activityNeurite length
2011
Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases
Nakamura T, Lipton S. Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death & Differentiation 2011, 18: 1478-1486. PMID: 21597461, PMCID: PMC3178424, DOI: 10.1038/cdd.2011.65.Peer-Reviewed Original ResearchConceptsS-nitrosylationProtein misfoldingCritical protein thiolsDynamin-related protein 1Protein disulfide isomeraseS-nitrosylation contributesNitrosative stressPosttranslational modificationsMitochondrial dynamicsNeuronal lossSynaptic damageDownstream pathwaysRedox modulationProtein thiolsNormal neuronal signalingMitochondrial dysfunctionN-methyl-D-aspartate (NMDA) receptor activationNeuronal signalingProtein 1Eventual neuronal lossNeuronal cell damageNeuronal cell injuryMisfoldingNeuronal NO synthaseNeurodegenerative diseases
2007
Neuroinflammation in neuronal degeneration and repair
Berliocchi L, Corasaniti M, Bagetta G, Lipton S. Neuroinflammation in neuronal degeneration and repair. Cell Death & Differentiation 2007, 14: 883-884. PMID: 17256010, DOI: 10.1038/sj.cdd.4402097.Peer-Reviewed Original Research