1989
Selective modulation of NMDA responses by reduction and oxidation
Aizenman E, Lipton S, Loring R. Selective modulation of NMDA responses by reduction and oxidation. Neuron 1989, 2: 1257-1263. PMID: 2696504, DOI: 10.1016/0896-6273(89)90310-3.Peer-Reviewed Original Research
1988
Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801.
Hahn J, Aizenman E, Lipton S. Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801. Proceedings Of The National Academy Of Sciences Of The United States Of America 1988, 85: 6556-6560. PMID: 2901101, PMCID: PMC282012, DOI: 10.1073/pnas.85.17.6556.Peer-Reviewed Original ResearchConceptsAntagonist MK-801MK-801N-methyl-D-aspartate (NMDA) receptor-coupled ion channelsExtracellular Ca2N-methyl-D-aspartate antagonist MK-801Rat retinal ganglion cellsReceptor-coupled ion channelsGlutamate-induced cell deathCentral mammalian neuronsRetinal ganglion cellsElevated extracellular Ca2Severe neurological insultPatch-clamp experimentsDementia complexNeuronal deathCentral neuronsGanglion cellsNeurological insultNeurotoxic effectsAlzheimer's diseaseNeurological disordersDegenerative disordersNerve cellsMammalian neuronsHuntington's diseaseThe interaction of agonists and noncompetitive antagonists at the excitatory amino acid receptors in rat retinal ganglion cells in vitro
Karschin A, Aizenman E, Lipton. The interaction of agonists and noncompetitive antagonists at the excitatory amino acid receptors in rat retinal ganglion cells in vitro. Journal Of Neuroscience 1988, 8: 2895-2906. PMID: 2842467, PMCID: PMC6569411, DOI: 10.1523/jneurosci.08-08-02895.1988.Peer-Reviewed Original ResearchConceptsExcitatory amino acidsGanglion cellsMK-801Excitatory amino acid receptorsRat retinal ganglion cellsWhole-cell patch-clamp techniqueCultured ganglion cellsKainate-activated currentsKainate-induced currentsAmino acid receptorsConcentrations of NMDAApplication of kainateKainate-induced responsesPresence of NMDAReceptor-ion channel complexRetinal ganglion cellsNoncompetitive NMDA antagonistPatch-clamp techniqueDegree of blockAnticonvulsant MK-801Ganglion cell membraneDissociative anesthetic phencyclidineMicroM kainateKainate currentsLarge inward currents