2024
Single‐Cell Patch‐Clamp/Proteomics of Human Alzheimer's Disease iPSC‐Derived Excitatory Neurons Versus Isogenic Wild‐Type Controls Suggests Novel Causation and Therapeutic Targets
Ghatak S, Diedrich J, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork N, Yates J, Lipton S. Single‐Cell Patch‐Clamp/Proteomics of Human Alzheimer's Disease iPSC‐Derived Excitatory Neurons Versus Isogenic Wild‐Type Controls Suggests Novel Causation and Therapeutic Targets. Advanced Science 2024, 11: e2400545. PMID: 38773714, PMCID: PMC11304297, DOI: 10.1002/advs.202400545.Peer-Reviewed Original ResearchAbundance of individual proteinsIsogenic wild-type controlsSingle-cell (scHuman AD brainsWild-type controlsSingle-cellAlzheimer's diseaseMulticellular organismsSingle-cell physiologyAD brainTherapeutic targetIndividual proteinsProteomic informationGenetic mutationsProteinProteomicsProtein expressionHiPSC-neuronsExcitatory neuronsElectrophysiological statusDisease statesPhysiologyElectrophysiological dataNeuronsNeuronal levelMetabolic Bypass Rescues Aberrant S‐nitrosylation‐Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons
Andreyev A, Yang H, Doulias P, Dolatabadi N, Zhang X, Luevanos M, Blanco M, Baal C, Putra I, Nakamura T, Ischiropoulos H, Tannenbaum S, Lipton S. Metabolic Bypass Rescues Aberrant S‐nitrosylation‐Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons. Advanced Science 2024, 11: 2306469. PMID: 38235614, PMCID: PMC10966553, DOI: 10.1002/advs.202306469.Peer-Reviewed Original ResearchTricarboxylic acidOxidative phosphorylationAlzheimer's diseaseSynapse lossSynaptic lossPathological correlate of cognitive declineHuman AD brainsTCA cycle inhibitionMetabolic flux experimentsAberrant S-nitrosylationPostmortem human AD brainIsogenic wild-typeAssociated with synaptic lossDysfunctional mitochondrial metabolismMitochondrial bioenergetic functionProtein S-nitrosylationModel of ADMitochondrial energy metabolismCell-permeable derivativeCorrelate of cognitive declineAD brainMitochondrial metabolismEnzyme functionHiPSC-based modelsBioenergetic function
2022
S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders
Kim K, Cho E, Eom J, Oh S, Nakamura T, Oh C, Lipton S, Kim Y. S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders. Cell Death & Differentiation 2022, 29: 2137-2150. PMID: 35462559, PMCID: PMC9613756, DOI: 10.1038/s41418-022-01004-0.Peer-Reviewed Original ResearchConceptsS-nitrosylationProtein aggregatesAutophagic fluxProtein S-nitrosylationBlocks autophagic fluxCathepsin BCaspase-dependent neuronal apoptosisPosttranslational modificationsProtease cathepsin BEnzymatic functionLysosomal protease cathepsin BCTSB activityChemical inhibitorsCA-074MeHuman AD brainsEnzymatic activityCysteineNeurodegenerative disordersPostmortem human AD brainTransgenic miceNeuronal apoptosisCTSBAccumulationAD pathogenesisAlzheimer's disease