2023
Conserved but not critical: Trafficking and function of NaV1.7 are independent of highly conserved polybasic motifs
Tyagi S, Sarveswaran N, Higerd-Rusli G, Liu S, Dib-Hajj F, Waxman S, Dib-Hajj S. Conserved but not critical: Trafficking and function of NaV1.7 are independent of highly conserved polybasic motifs. Frontiers In Molecular Neuroscience 2023, 16: 1161028. PMID: 37008789, PMCID: PMC10060856, DOI: 10.3389/fnmol.2023.1161028.Peer-Reviewed Original ResearchSensory axonsPeripheral voltage-gated sodium channelsMajor unmet clinical needFunction of Nav1.7Non-addictive treatmentsUnmet clinical needVoltage-clamp recordingsVoltage-gated sodium channelsPain therapyChronic painPrimary afferentsNoxious stimuliTherapeutic modalitiesAction potentialsAxonal transportClinical needVesicular packagingSodium channelsHuman painPainAxonal traffickingAxonal surfaceAxonal membraneAxonsAttractive target
1985
Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation
Bowe C, Kocsis J, Waxman S. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation. Proceedings Of The Royal Society B 1985, 224: 355-366. PMID: 2410932, DOI: 10.1098/rspb.1985.0037.Peer-Reviewed Original ResearchConceptsDorsal spinal rootsSensory fibersMammalian motorPotassium channelsSpinal rootsAction potentialsRoot fibersCompound action potentialSingle sensory fibresDorsal root fibersVentral root fibersClasses of axonsIndividual action potentialsPharmacological blockadeVentral rootsYoung rootsSensory axonsWhole nervePotassium conductanceAxon responsesCourse of maturationBlockadeAxonsRoots resultsDifferential sensitivity