2022
Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma
Sekine Y, Kannan R, Wang X, Strittmatter SM. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Experimental Neurology 2022, 353: 114070. PMID: 35398339, PMCID: PMC9555232, DOI: 10.1016/j.expneurol.2022.114070.Peer-Reviewed Original ResearchConceptsAxon regenerationModerate spinal cord contusion injurySpinal cord contusion injuryTraumatic spinal cord injuryAdult mammalian central nervous systemGrowth conesRetinal ganglion cell axonsOptic nerve crushSpinal cord crush injuryGanglion cell axonsSpinal cord injuryMammalian central nervous systemCentral nervous systemCorticospinal axon regenerationContusion injuryAxonal sproutingCrush injuryNerve crushAxonal growth conesCord injuryAxon sproutingCell axonsProximal bodyNervous systemNeural repair
2008
The N-Terminal Domain of Nogo-A Inhibits Cell Adhesion and Axonal Outgrowth by an Integrin-Specific Mechanism
Hu F, Strittmatter SM. The N-Terminal Domain of Nogo-A Inhibits Cell Adhesion and Axonal Outgrowth by an Integrin-Specific Mechanism. Journal Of Neuroscience 2008, 28: 1262-1269. PMID: 18234903, PMCID: PMC2856844, DOI: 10.1523/jneurosci.1068-07.2008.Peer-Reviewed Original ResearchConceptsCell adhesionFocal adhesion kinase activationN-terminal domainAxonal outgrowthInhibits cell adhesionAxonal growth conesCNS axon regenerationKinase activationCertain integrinsIntegrin activatorIntegrin beta1Widespread expressionExtracellular matrixSecond domainAlpha5 integrinUnknown mechanismIntegrinsGrowth conesNogo-A proteinCell linesAlpha6 integrinNogo-66 receptorAxonal growthAdult brainOutgrowth
2004
Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury
Kim JE, Liu BP, Park JH, Strittmatter SM. Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury. Neuron 2004, 44: 439-451. PMID: 15504325, DOI: 10.1016/j.neuron.2004.10.015.Peer-Reviewed Original ResearchMeSH Keywords5,7-DihydroxytryptamineAnimalsAxonsBehavior, AnimalBlotting, NorthernBlotting, SouthernBrainCell CountCells, CulturedCloning, MolecularCornified Envelope Proline-Rich ProteinsDesipramineDisease Models, AnimalEvoked Potentials, MotorFemaleGanglia, SpinalGlial Fibrillary Acidic ProteinGlucoseGPI-Linked ProteinsGrowth ConesImmunohistochemistryMiceMice, Inbred C57BLMice, KnockoutMotor ActivityMyelin ProteinsMyelin SheathMyelin-Associated GlycoproteinNerve RegenerationNeuronsNogo ProteinsNogo Receptor 1Phospholipid EthersProteinsPyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSerotoninSerotonin AgentsSpinal CordSpinal Cord InjuriesTime FactorsConceptsAdult CNSNogo-66Spinal cord injuryAdult mammalian CNSNogo-66 receptorDorsal hemisectionDRG neuronsFunctional recoveryRubrospinal fibersCord injuryMyelin inhibitorsComplete transectionCorticospinal fibersMotor functionSpinal cordMotor impairmentAxon regenerationMammalian CNSAxonal growthAxonal outgrowthCNS myelinMiceInhibitory proteinInjuryGrowth cones
2003
Chapter 267 Semaphorins and their Receptors in Vertebrates and Invertebrates
Schmidt E, Togashi H, Strittmatter S. Chapter 267 Semaphorins and their Receptors in Vertebrates and Invertebrates. 2003, 877-881. DOI: 10.1016/b978-012124546-7/50628-8.Peer-Reviewed Original ResearchFunctions of semaphorinsNervous system developmentMalignant lung cellsCentral nervous system developmentVertebrate semaphorinsNon-neuronal cellsCytoplasmic localizationAdult tissuesSemaphorin familyExpression of Sema4DWidespread expressionSemaphorinsOlfactory neuronsGuidance cuesCertain receptorsGrowth conesT lymphocyte activationRetraction of axonsAntagonistic activityReduced levelsCardiovascular abnormalitiesCertain neuronsAttractantsImmune systemLung cells
2002
Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor
Liu BP, Fournier A, GrandPré T, Strittmatter SM. Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor. Science 2002, 297: 1190-1193. PMID: 12089450, DOI: 10.1126/science.1073031.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBinding SitesChick EmbryoCloning, MolecularCOS CellsGanglia, SpinalGene LibraryGPI-Linked ProteinsLigandsMiceMyelin ProteinsMyelin-Associated GlycoproteinNerve RegenerationNeuritesNeuronsNogo ProteinsNogo Receptor 1Peptide FragmentsPhosphatidylinositol Diacylglycerol-LyaseProtein Structure, TertiaryReceptors, Cell SurfaceRecombinant Fusion ProteinsSialic AcidsTransfectionType C Phospholipases
2000
Transduction of Inhibitory Signals by the Axonal Growth Cone
Wang L, Fournier A, Nakamura F, Takahashi T, Kalb R, Strittmatter S. Transduction of Inhibitory Signals by the Axonal Growth Cone. Contemporary Neuroscience 2000, 131-153. DOI: 10.1007/978-1-59259-200-5_6.Peer-Reviewed Original ResearchIdentification of the Nogo inhibitor of axon regeneration as a Reticulon protein
GrandPré T, Nakamura F, Vartanian T, Strittmatter S. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 2000, 403: 439-444. PMID: 10667797, DOI: 10.1038/35000226.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsCattleCell DivisionCell LineCentral Nervous SystemChick EmbryoCloning, MolecularConsensus SequenceEscherichia coliGrowth InhibitorsHumansMembrane ProteinsMolecular Sequence DataMyelin ProteinsNerve RegenerationNogo ProteinsOligodendrogliaPC12 CellsRatsRecombinant ProteinsSequence Homology, Amino AcidConceptsCentral nervous systemPeripheral nervous systemCNS white matterAxonal regenerationAxon regenerationNervous systemWhite matterAdult central nervous systemMammalian axon regenerationIN-1 antibodiesReticulon 1Dorsal root ganglion growth conesFunctional recoverySpinal cordSchwann cellsCNS axonsExtracellular domainAxonal extensionNogoAxon extensionGrowth conesOligodendrocytesInhibitory activityReticulon 4Moderate degree
1997
Neuronal and Non-Neuronal Collapsin-1 Binding Sites in Developing Chick Are Distinct from Other Semaphorin Binding Sites
Takahashi T, Nakamura F, Strittmatter S. Neuronal and Non-Neuronal Collapsin-1 Binding Sites in Developing Chick Are Distinct from Other Semaphorin Binding Sites. Journal Of Neuroscience 1997, 17: 9183-9193. PMID: 9364065, PMCID: PMC6573609, DOI: 10.1523/jneurosci.17-23-09183.1997.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAvian ProteinsAxonsBinding SitesCells, CulturedCentral Nervous SystemChick EmbryoDNA, ComplementaryFetal ProteinsGanglia, SpinalGlycoproteinsLungMembrane ProteinsMesodermMiceMotor NeuronsMultigene FamilyNerve Growth FactorsNerve Tissue ProteinsNeuronsNeurotrophin 3Organ SpecificityRatsRats, Sprague-DawleyReceptors, Cell SurfaceRecombinant Fusion ProteinsSemaphorin-3AConceptsFusion proteinBinding sitesGrowth conesDRG neuronsNon-neuronal tissuesExtracellular proteinsF fusion proteinSemaphorin familyDRG growth conesProteinLow nanomolar affinityMajor blood vesselsLigand familyBrainstem neuronsSympathetic neuronsNanomolar affinityNervous systemAxonal pathsBiological activityBlood vesselsNeuronsFamilySitesMesenchymeSemaphorinsBrain CRMP Forms Heterotetramers Similar to Liver Dihydropyrimidinase
Wang L, Strittmatter S. Brain CRMP Forms Heterotetramers Similar to Liver Dihydropyrimidinase. Journal Of Neurochemistry 1997, 69: 2261-2269. PMID: 9375656, DOI: 10.1046/j.1471-4159.1997.69062261.x.Peer-Reviewed Original Research
1996
Signal Transduction at the Neuronal Growth Cone
Strittmatter S. Signal Transduction at the Neuronal Growth Cone. The Neuroscientist 1996, 2: 83-86. DOI: 10.1177/107385849600200208.Peer-Reviewed Original ResearchSignal transductionG-protein-mediated transductionG proteinsHeterotrimeric G proteinsCell adhesion molecule familyGrowth conesNervous system developmentAdhesion molecule familyGrowth cone membraneNeuronal growth conesLigand-receptor interactionsGrowth cone motilityCadherin familyIntracellular proteinsCytoskeletal changesExtracellular moleculesMolecular understandingIntegrin familyTransductionMolecules inhibitoryDiffusible messengerMolecule familyCone motilityIntracellular eventsCone membrane
1995
Neuronal Guidance Molecules: Inhibitory and Soluble Factors
Strittmatter S. Neuronal Guidance Molecules: Inhibitory and Soluble Factors. The Neuroscientist 1995, 1: 255-258. DOI: 10.1177/107385849500100502.Peer-Reviewed Original ResearchCell-surface adhesive proteinsMatrix-bound factorsGuidance moleculesImportance of moleculesAxonal guidance factorsAxonal growth conesExtracellular matrix componentsNeural developmentSoluble factorsPhysiological roleSemaphorin familyMolecular levelNeuronal guidance moleculesAdhesive proteinsGrowth conesGuidance factorsMatrix componentsGrowth inhibitorCentral roleAxonal outgrowthCNS myelinAxonal growth inhibitorsAxonal guidance moleculesRegenerationMoleculesCollapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33
Goshima Y, Nakamura F, Strittmatter P, Strittmatter S. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 1995, 376: 509-514. PMID: 7637782, DOI: 10.1038/376509a0.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBrainCaenorhabditis elegans ProteinsCell LineCell MembraneChick EmbryoGanglia, SpinalGlycoproteinsGTP-Binding ProteinsHelminth ProteinsIntercellular Signaling Peptides and ProteinsMolecular Sequence DataNerve Growth FactorsNerve Tissue ProteinsNeuritesNeuronsOocytesRecombinant Fusion ProteinsSemaphorin-3ASignal TransductionVirulence Factors, BordetellaXenopus laevisConceptsGrowth cone collapseDorsal root ganglion neuronsCollapsin response mediator proteinsCone collapseXenopus laevis oocyte expression systemChick nervous systemGanglion neuronsNervous systemOocyte expression systemUNC-33Inward currentsNeuronal proteinsAxonal pathfindingNeural developmentX. laevis oocytesGrowth conesLaevis oocytesIntracellular proteinsHeterotrimeric GTPMediator proteinsProteinIntracellular componentsNeuronsNeuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43
Strittmatter S, Fankhauser C, Huang P, Mashimo H, Fishman M. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 1995, 80: 445-452. PMID: 7859286, DOI: 10.1016/0092-8674(95)90495-6.Peer-Reviewed Original Research
1994
Activated mutants of the alpha subunit of G(o) promote an increased number of neurites per cell
Strittmatter S, Fishman M, Zhu X. Activated mutants of the alpha subunit of G(o) promote an increased number of neurites per cell. Journal Of Neuroscience 1994, 14: 2327-2338. PMID: 8158271, PMCID: PMC6577129, DOI: 10.1523/jneurosci.14-04-02327.1994.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCell LineChlorocebus aethiopsDNA PrimersDose-Response Relationship, DrugGTP-Binding ProteinsIntercellular Signaling Peptides and ProteinsKineticsMacromolecular SubstancesMolecular Sequence DataMutagenesis, Site-DirectedNeuritesNeuroblastomaPC12 CellsPeptidesPertussis ToxinPoint MutationTransfectionTumor Cells, CulturedVirulence Factors, BordetellaWasp VenomsConceptsAlpha oNumber of neuritesPertussis toxin-sensitive G proteinToxin-sensitive G proteinGrowth conesAlpha subunitG proteinsNeurite outgrowthTotal neurite lengthN1E-115 cellsAlpha i2Activated alpha subunitNeuroblastoma cellsNeurite numberNeurite lengthNeuronal growth conesAlpha sOncogenic mutationsActivation stateO mutantsActivationNeuritesCellsPoint mutationsSubunits
1993
Mediation by G Proteins of Signals That Cause Collapse of Growth Cones
Igarashi M, Strittmatter S, Vartanian T, Fishman M. Mediation by G Proteins of Signals That Cause Collapse of Growth Cones. Science 1993, 259: 77-79. PMID: 8418498, DOI: 10.1126/science.8418498.Peer-Reviewed Original Research
1992
GAP-43 as a modulator of G protein transduction in the growth cone.
Strittmatter SM. GAP-43 as a modulator of G protein transduction in the growth cone. Perspectives On Developmental Neurobiology 1992, 1: 13-9. PMID: 1364285.Peer-Reviewed Original ResearchConceptsGrowth cone membraneGrowth cone motilityMolecular mechanismsSame cellular functionCone motilityG protein-coupled transmembrane receptorsAmino acid stretchComplex cellular propertiesCone membraneGrowth conesNeurotransmitter releaseGrowth cone functionPossible molecular mechanismsCellular functionsGAP-43 functionHydrophilic proteinProtein transductionGAP-43Transmembrane receptorsGAP-43 regulationCysteine residuesTransduction systemSynaptic plasticityAmino terminusCell shape
1991
An intracellular guanine nucleotide release protein for G0. GAP-43 stimulates isolated alpha subunits by a novel mechanism.
Strittmatter SM, Valenzuela D, Sudo Y, Linder ME, Fishman MC. An intracellular guanine nucleotide release protein for G0. GAP-43 stimulates isolated alpha subunits by a novel mechanism. Journal Of Biological Chemistry 1991, 266: 22465-22471. PMID: 1834672, DOI: 10.1016/s0021-9258(18)54595-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCattleGAP-43 ProteinGTP-Binding ProteinsGuanine NucleotidesGuanosine 5'-O-(3-Thiotriphosphate)Guanosine DiphosphateGuanosine TriphosphateKineticsLiposomesMacromolecular SubstancesMembrane GlycoproteinsNADNerve Tissue ProteinsPertussis ToxinPhosphatidylcholinesPhosphoproteinsProtein BindingRatsRecombinant ProteinsVirulence Factors, BordetellaConceptsG proteinsMembrane-associated G proteinsGAP-43Novel mechanismG protein-coupled receptorsG protein-coupled membrane receptorsIntracellular guanine nucleotidesGuanine nucleotidesProtein-coupled receptorsCytosolic faceGTP gamma S bindingRegions of neuronsGTPase activityGDP releaseAlpha s.Alpha subunitAlpha i1Alpha oMembrane receptorsNeuronal proteinsBeta gammaGTP gamma SProteinGamma S bindingGrowth conesThe neuronal growth cone as a specialized transduction system
Strittmatter S, Fishman M. The neuronal growth cone as a specialized transduction system. BioEssays 1991, 13: 127-134. PMID: 1831353, DOI: 10.1002/bies.950130306.Peer-Reviewed Original ResearchConceptsGene programGrowth conesNeuronal growth conesExtracellular stimuliEnvironmental signalsExtracellular signalsMembrane proteinsTransduction systemCell shapeGrowth cone behaviorExtracellular matrixGrowth cone activityCone behaviorGrowth programMechanical forcesNeuronal growthProteinTransduction devicesIntrinsic factorsGAP-43Molecular sitesGTPPossible componentsSitesCone activityGrowth cone transduction: Go and GAP-43
STRITTMATTER S, VALENZUELA D, VARTANIAN T, SUDO Y, ZUBER M, FISHMAN M. Growth cone transduction: Go and GAP-43. Journal Of Cell Science. Supplement 1991, 1991: 27-33. PMID: 1840457, DOI: 10.1242/jcs.1991.supplement_15.5.Peer-Reviewed Original ResearchConceptsGrowth cone membraneExtracellular signalsIntracellular proteinsGrowth cone targetingNon-cytoskeletal proteinsG protein familyG-protein-linked receptorsAppropriate synaptic targetsComplex brain architectureCone membraneGrowth conesProtein-linked receptorsGrowth cone functionNeuronal growth conesMembrane associationProtein familyNon-neuronal cellsGAP-43Filopodial formationAmino terminusCell shapeExtrinsic cluesSecond messengerGrowth proteinsProtein
1990
G0 is a major growth cone protein subject to regulation by GAP-43
Strittmatter S, Valenzuela D, Kennedy T, Neer E, Fishman M. G0 is a major growth cone protein subject to regulation by GAP-43. Nature 1990, 344: 836-841. PMID: 2158629, DOI: 10.1038/344836a0.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBrain ChemistryCell MembraneGAP-43 ProteinGrowth SubstancesGTP-Binding ProteinsGuanosine 5'-O-(3-Thiotriphosphate)Guanosine TriphosphateMembrane GlycoproteinsMolecular Sequence DataMolecular WeightNerve Tissue ProteinsPeptide FragmentsProtein BindingRatsReceptors, Cell SurfaceReceptors, NeurotransmitterSequence Homology, Nucleic AcidSignal TransductionThionucleotidesConceptsTransmembrane receptorsNeuronal growth cone membraneAmino-terminal domainGTP-binding proteinsGrowth cone membraneExtracellular signalsGrowth cone proteinGAP-43Cone membraneGrowth conesCone proteinNeuronal growthProteinS bindingMajor componentG0ReceptorsGTPRegulationIntracellularBindingMembraneDomain