2018
Ablation of insulin receptor substrates 1 and 2 suppresses Kras-driven lung tumorigenesis
Xu H, Lee M, Tsai P, Adler A, Curry N, Challa S, Freinkman E, Hitchcock D, Copps K, White M, Bronson R, Marcotrigiano M, Wu Y, Clish C, Kalaany N. Ablation of insulin receptor substrates 1 and 2 suppresses Kras-driven lung tumorigenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2018, 115: 4228-4233. PMID: 29610318, PMCID: PMC5910837, DOI: 10.1073/pnas.1718414115.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsAmino AcidsAnimalsAutophagyCarcinogenesisCarcinoma, Non-Small-Cell LungCodon, TerminatorGenes, rasHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor ILung NeoplasmsMiceNeoplasm ProteinsProteolysisProto-Oncogene Proteins c-aktProto-Oncogene Proteins p21(ras)Signal TransductionConceptsIR/IGF1RLung cancerLung tumorigenesisInsulin receptorTumor cellsInsulin-like growth factor 1 receptorCell lung cancerGrowth factor 1 receptorHuman NSCLC cellsEffective therapeutic strategyLung cancer initiationIntracellular levelsKirsten rat sarcomaFactor 1 receptorTumor burdenCancer deathLeading causeMutant NSCLCNSCLC cellsIGF1R inhibitionMouse modelTherapeutic strategiesInsulin/IGF1Acute lossRat sarcoma
2014
IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity
White M. IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obesity And Metabolism 2014, 16: 4-15. PMID: 25200290, DOI: 10.1111/dom.12347.Peer-Reviewed Original ResearchConceptsInsulin/IGF1Central nervous systemInsulin-like signalingLife spanOrganisms showsCellular functionsNutrient homeostasisInsulin resistanceGenetic manipulationSystemic insulin resistanceClinical Alzheimer's diseaseType 2 diabetesEnergy homeostasisNeurodegenerative diseasesMetabolismNeurodegenerationCompensatory hyperinsulinaemiaHomeostasisProgressive neurodegenerationSystemic metabolismIGF1Excess insulinNervous systemAlzheimer's diseaseClinical perspective
2013
Insulin receptor substrate signaling suppresses neonatal autophagy in the heart
Riehle C, Wende A, Sena S, Pires K, Pereira R, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, Perry C, Dong X, Valdez S, Rech M, Sheng X, Weimer B, Gottlieb R, White M, Abel E. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. Journal Of Clinical Investigation 2013, 123: 5319-5333. PMID: 24177427, PMCID: PMC3859408, DOI: 10.1172/jci71171.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsAnimalsApoptosisApoptosis Regulatory ProteinsAutophagyBeclin-1Cardiomyopathy, DilatedFetal HeartHeartHeart FailureInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IMiceMitochondria, HeartMyocytes, CardiacOxidative PhosphorylationPhosphorylationProtein Processing, Post-TranslationalReceptor, IGF Type 1Signal TransductionTOR Serine-Threonine KinasesConceptsInsulin receptor substrateInduction of autophagyActivation of mTORIGF-1R signalingPostnatal cardiac developmentUnrestrained autophagyCardiomyocyte-specific deletionGenetic suppressionCardiac developmentReceptor substrateIGF-1 receptorEssential adaptationProsurvival signalingAutophagic fluxAutophagy suppressionAutophagyMitochondrial dysfunctionMammalian heartPhysiological suppressionNeonatal starvationAutophagic activationSignalingIRS1IRS2Insulin action
2012
Integrating Metabolism and Longevity Through Insulin and IGF1 Signaling
Sadagurski M, White M. Integrating Metabolism and Longevity Through Insulin and IGF1 Signaling. Endocrinology And Metabolism Clinics Of North America 2012, 42: 127-148. PMID: 23391244, PMCID: PMC3982789, DOI: 10.1016/j.ecl.2012.11.008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCentral Nervous SystemInsulinInsulin-Like Growth Factor ILongevitySignal TransductionConceptsInsulin/IGF1Central nervous systemLife spanOrganism longevityCellular functionsStress resistanceGenetic manipulationIGF1 signalingInsulin pathwayMetabolic homeostasisEnergy homeostasisPeripheral energy homeostasisSystemic insulin resistanceHomeostasisMetabolismSystemic metabolismNeuronal circuitsCompensatory hyperinsulinemiaInsulin resistanceIGF1Central regulationExcess insulinNervous systemLongevityNematodes
2005
Insulin Receptor Substrate 2 Is Essential for Maturation and Survival of Photoreceptor Cells
Yi X, Schubert M, Peachey N, Suzuma K, Burks D, Kushner J, Suzuma I, Cahill C, Flint C, Dow M, Leshan R, King G, White M. Insulin Receptor Substrate 2 Is Essential for Maturation and Survival of Photoreceptor Cells. Journal Of Neuroscience 2005, 25: 1240-1248. PMID: 15689562, PMCID: PMC6725974, DOI: 10.1523/jneurosci.3664-04.2005.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAnimals, NewbornApoptosisCell SurvivalDiabetic RetinopathyEye ProteinsGene DeletionHomeodomain ProteinsHyperglycemiaHyperinsulinismInsulin Receptor Substrate ProteinsInsulin ResistanceInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsMiceMice, KnockoutPhosphoproteinsPhosphorylationPhotic StimulationPhotoreceptor CellsProtein Processing, Post-TranslationalProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRetinal Ganglion CellsSignal TransductionTrans-ActivatorsConceptsIrs2-/- micePhotoreceptor cellsPlexiform layerInsulin receptor substrate 2Insulin receptor substrateInsulin-like growth factor 1 receptorGrowth factor 1 receptorMost photoreceptor cellsInner plexiform layerOuter plexiform layerFactor 1 receptorFinal common pathwaySurvival of photoreceptorsNormal electrical functionMonths of ageWeeks of ageReceptor substrateCellular growthSubstrate 2Akt phosphorylationGanglion cellsIRS2 expressionPharmacological strategiesControl littermatesPhotoreceptor degenerationDeletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice
Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K, Sakaue H, Kido Y, Hayashi Y, Nakayama K, White M, Kasuga M. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nature Medicine 2005, 11: 175-182. PMID: 15685168, DOI: 10.1038/nm1187.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCell NucleusCyclin-Dependent Kinase Inhibitor p27Diabetes Mellitus, Type 2Disease Models, AnimalEnzyme InhibitorsHyperglycemiaHyperinsulinismInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansLeptinMiceMice, KnockoutPhosphoproteinsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptors, Cell SurfaceReceptors, LeptinSignal TransductionTumor Suppressor ProteinsConceptsCyclin-dependent kinasesInsulin receptor substrate 2Cell cycle progressionPancreatic beta cell proliferationPotential new targetsCompensatory hyperinsulinemiaCycle progressionProtein p27Kip1Substrate 2Type 2 diabetes mellitusPancreatic beta cellsP27Kip1Beta-cell failureBeta-cell proliferationType 2 diabetesLong formNew targetsDeletionDiabetes mellitusDiabetic miceIslet massLeptin receptorBeta cellsAnimal modelsMice
2003
Upregulation of insulin receptor substrate-2 in pancreatic β cells prevents diabetes
Hennige A, Burks D, Ozcan U, Kulkarni R, Ye J, Park S, Schubert M, Fisher T, Dow M, Leshan R, Zakaria M, Mossa-Basha M, White M. Upregulation of insulin receptor substrate-2 in pancreatic β cells prevents diabetes. Journal Of Clinical Investigation 2003, 112: 1521-1532. PMID: 14617753, PMCID: PMC259126, DOI: 10.1172/jci18581.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell SizeDiabetes Mellitus, ExperimentalDiabetes Mellitus, Type 2Dietary FatsGene Expression RegulationHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansIslets of Langerhans TransplantationMaleMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicPhosphoproteinsReceptor, InsulinSignal TransductionSurvival RateUp-RegulationConceptsPancreatic beta-cell functionPeripheral insulin actionBeta-cell failureBeta-cell functionType 2 diabetesIrs2-/- miceInsulin receptor substrate 2Beta-cell growthBeta cell-specific expressionPrevents diabetesObese miceTransgenic isletsInsulin secretionWT isletsIRS2 expressionPharmacological approachesBeta cellsPhysiologic responsesInsulin actionRational treatmentDiabetesInsulin/IGFCell functionMiceCell-specific expressioncAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2
Jhala U, Canettieri G, Screaton R, Kulkarni R, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes & Development 2003, 17: 1575-1580. PMID: 12842910, PMCID: PMC196130, DOI: 10.1101/gad.1097103.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell LineCell SurvivalColforsinCyclic AMPCyclic AMP Response Element-Binding ProteinDiabetes MellitusGene Expression RegulationGlucagonGlucagon-Like Peptide 1GlucoseGlucose IntoleranceHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansMiceMice, TransgenicPeptide FragmentsPhosphoproteinsPhosphorylationPromoter Regions, GeneticProtein PrecursorsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionTransfectionTransgenesTumor Cells, CulturedConceptsPancreatic β-cell survivalActivity of CREBSecond messenger cAMPSurvival kinase AktΒ-cell survivalKinase AktPathway componentsA-CREBCREB actionExpression of IRS2Cell survivalBeta-cell apoptosisDirect targetIslet cell survivalNovel mechanismCREBIRS2ExpressionCAMPInductionTransgeneAktIGF-1ApoptosisSurvival
2001
Regulation of Insulin/Insulin-like Growth Factor-1 Signaling by Proteasome-mediated Degradation of Insulin Receptor Substrate-2*
Rui L, Fisher T, Thomas J, White M. Regulation of Insulin/Insulin-like Growth Factor-1 Signaling by Proteasome-mediated Degradation of Insulin Receptor Substrate-2*. Journal Of Biological Chemistry 2001, 276: 40362-40367. PMID: 11546773, DOI: 10.1074/jbc.m105332200.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsCarcinoma, HepatocellularDiabetes Mellitus, Type 2Down-RegulationFeedbackFibroblastsHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsLiver Neoplasms, ExperimentalMiceMitogen-Activated Protein KinasesOsmotic PressurePeptide HydrolasesPhosphatidylinositol 3-KinasesPhosphoproteinsProteasome Endopeptidase ComplexProtein KinasesProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptor, InsulinSignal TransductionTOR Serine-Threonine KinasesTumor Cells, CulturedUbiquitinConceptsInsulin-like growth factor-1Insulin/IGFMouse embryo fibroblastsProteasome-mediated degradationIRS-2Embryo fibroblastsInsulin/insulin-like growth factor-1 signalingInsulin receptor substrate (IRS) proteinsUbiquitin/proteasome-mediated degradationNovel negative feedback mechanismInsulin-like growth factor-1 signalingInsulin receptor substrate 2Inhibitor of phosphatidylinositolIRS-1 activationPeripheral insulin actionIGF-1 treatmentReceptor tyrosine kinasesHomologous receptor tyrosine kinasesGrowth factor-1IRS proteinsSubstrate proteinsBeta-cell survivalOsmotic stressTyrosine kinaseIRS-1Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways
Rui L, Aguirre V, Kim J, Shulman G, Lee A, Corbould A, Dunaif A, White M. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. Journal Of Clinical Investigation 2001, 107: 181-189. PMID: 11160134, PMCID: PMC199174, DOI: 10.1172/jci10934.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinCHO CellsCricetinaeInsulinInsulin AntagonistsInsulin ResistanceInsulin-Like Growth Factor IMAP Kinase Kinase 1Mitogen-Activated Protein Kinase KinasesPhosphatidylinositol 3-KinasesPhosphorylationProtein Serine-Threonine KinasesReceptor, InsulinSerineSignal TransductionTumor Necrosis Factor-alphaTyrosineConceptsPhosphorylation of Ser307IRS-1Serine/threonine phosphorylationTNF-alpha-stimulated phosphorylationInsulin-stimulated tyrosine phosphorylationRelevant phosphorylation sitesDistinct kinase pathwaysInsulin/IGFInsulin-stimulated phosphorylationThreonine phosphorylationStimulates PhosphorylationPhosphorylation sitesJun kinaseTyrosine phosphorylationKinase pathwaySer307PhosphorylationCultured cellsDistinct pathwaysHeterologous inhibitionPolyclonal antibodiesPreadipocytesPathwayAdipocytesCells
2000
Perspective: The insulin signaling system--a common link in the pathogenesis of type 2 diabetes.
Withers D, White M. Perspective: The insulin signaling system--a common link in the pathogenesis of type 2 diabetes. Endocrinology 2000, 141: 1917-21. PMID: 10830270, DOI: 10.1210/endo.141.6.7584.Peer-Reviewed Original Research
1999
Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling.
Cousin S, Hügl S, Myers M, White M, Reifel-Miller A, Rhodes C. Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochemical Journal 1999, 344 Pt 3: 649-58. PMID: 10585851, PMCID: PMC1220686, DOI: 10.1042/0264-6021:3440649.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdaptor Proteins, Vesicular TransportAnimalsCell DivisionCell LineDNA-Binding ProteinsGlucoseGRB2 Adaptor ProteinGrowth HormoneInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansJanus Kinase 2Milk ProteinsMitogen-Activated Protein KinasesPhosphoproteinsPhosphorylationProteinsProtein-Tyrosine KinasesProto-Oncogene ProteinsRatsRibosomal Protein S6 KinasesShc Signaling Adaptor ProteinsSignal TransductionSon of Sevenless Protein, DrosophilaSrc Homology 2 Domain-Containing, Transforming Protein 1STAT5 Transcription FactorTrans-ActivatorsConceptsINS-1 cell proliferationSignal transduction pathwaysSignal transductionCell proliferationKinase 2Sevenless-1 proteinMitogenic signal transduction pathwaysJAK2/STAT5 pathwayMitogen-activated protein kinaseInsulin receptor substrateBeta-cell proliferationRat growth hormoneJAK2/STAT5Pancreatic beta cell proliferationMitogenic signalingS6 kinaseProtein kinaseProtein associationTranscription 5Beta-cell lineReceptor substrateDifferent mitogenicRat beta-cell lineDownstream activationIRS-2
1998
Differential Regulation of Insulin Receptor Substrate-2 and Mitogen-Activated Protein Kinase Tyrosine Phosphorylation by Phosphatidylinositol 3-Kinase Inhibitors in SH-SY5Y Human Neuroblastoma Cells*This work was supported by NIH Grants R29-NS-32843 and R01-NS-36778, grants from the American Diabetes Association and Juvenile Diabetes Foundation (to E.L.F.), and a grant from the Millie Schembechler Adrenal Research Fund of the University of Michigan Comprehensive Cancer Center (to E.L.F. and P.S.L.).
Kim B, Leventhal P, White M, Feldman E. Differential Regulation of Insulin Receptor Substrate-2 and Mitogen-Activated Protein Kinase Tyrosine Phosphorylation by Phosphatidylinositol 3-Kinase Inhibitors in SH-SY5Y Human Neuroblastoma Cells*This work was supported by NIH Grants R29-NS-32843 and R01-NS-36778, grants from the American Diabetes Association and Juvenile Diabetes Foundation (to E.L.F.), and a grant from the Millie Schembechler Adrenal Research Fund of the University of Michigan Comprehensive Cancer Center (to E.L.F. and P.S.L.). Endocrinology 1998, 139: 4881-4889. PMID: 9832424, DOI: 10.1210/endo.139.12.6348.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdaptor Proteins, Vesicular TransportCalcium-Calmodulin-Dependent Protein KinasesElectrophoresis, Polyacrylamide GelEnzyme InhibitorsGRB2 Adaptor ProteinHumansInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIsoenzymesMitogen-Activated Protein Kinase 1NeuritesNeuroblastomaPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphoproteinsPhosphorylationProteinsShc Signaling Adaptor ProteinsSrc Homology 2 Domain-Containing, Transforming Protein 1Tumor Cells, CulturedTyrosineConceptsInsulin receptor substrate 2IRS-2 tyrosine phosphorylationMitogen-activated protein kinase activationTyrosine phosphorylationProtein kinase activationKinase activationSerine/threonine phosphorylationSubstrate 2Association of Grb2Neurite outgrowthSH-SY5Y human neuroblastomaThreonine phosphorylationNegative regulationSH-SY5Y human neuroblastoma cellsIRS-1Grb2Nervous system growthDifferential regulationPhosphorylationHuman neuroblastoma cellsNeuronal cellsPhosphatidylinositolPI 3Concentration-dependent mannerInsulin-like growth factor IInsulin-like Growth Factor I (IGF-I)-stimulated Pancreatic β-Cell Growth Is Glucose-dependent SYNERGISTIC ACTIVATION OF INSULIN RECEPTOR SUBSTRATE-MEDIATED SIGNAL TRANSDUCTION PATHWAYS BY GLUCOSE AND IGF-I IN INS-1 CELLS*
Hügl S, White M, Rhodes C. Insulin-like Growth Factor I (IGF-I)-stimulated Pancreatic β-Cell Growth Is Glucose-dependent SYNERGISTIC ACTIVATION OF INSULIN RECEPTOR SUBSTRATE-MEDIATED SIGNAL TRANSDUCTION PATHWAYS BY GLUCOSE AND IGF-I IN INS-1 CELLS*. Journal Of Biological Chemistry 1998, 273: 17771-17779. PMID: 9651378, DOI: 10.1074/jbc.273.28.17771.Peer-Reviewed Original ResearchMeSH KeywordsCell DivisionCell LineEnzyme ActivationGlucoseInsulin-Like Growth Factor IIslets of LangerhansPhosphatidylinositol 3-KinasesPhosphorylationSignal TransductionViral ProteinsConceptsInsulin-like growth factor IGrowth factor IBeta-cell proliferationINS-1 cell proliferationCell proliferationFactor IMM glucoseCombination of IGFPancreatic β-cell growthPancreatic beta-cell lineBeta-cell lineΒ-cell growthINS-1 cellsNM IGFBeta-cell mitogenesisCertain growth factorsSignaling mechanismSignal transduction pathwaysGlucose metabolismIGFCell proliferation rateGrowth factorIRS-2Transduction pathwaysGlucose concentrationInsulin receptor substrate (IRS) proteins IRS-1 and IRS-2 differential signaling in the insulin/insulin-like growth factor-I pathways in fetal brown adipocytes.
Valverde A, Lorenzo M, Pons S, White M, Benito M. Insulin receptor substrate (IRS) proteins IRS-1 and IRS-2 differential signaling in the insulin/insulin-like growth factor-I pathways in fetal brown adipocytes. Endocrinology 1998, 12: 688-97. PMID: 9605931, DOI: 10.1210/mend.12.5.0106.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdipocytesAdipose Tissue, BrownAmino Acid SequenceAnimalsEnzyme ActivationFetusGRB2 Adaptor ProteinInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsMolecular Sequence DataPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationProtein BindingProteinsRatsRats, WistarReceptor, InsulinSignal TransductionSrc Homology DomainsTyrosineConceptsInsulin/IGFInsulin receptor substrateIRS-1IRS-2Shc proteinsTyrosine phosphorylationInsulin receptor substrate (IRS) proteinsInsulin/insulin-like growth factorFetal rat brown adipocytesIRS-2-associated phosphatidylinositolIRS-2 tyrosine phosphorylationFetal brown adipocytesProtein kinase signal pathwayBrown adipocytesKinase signal pathwayBrown adipocyte proliferationInsulin/insulinSubstrate proteinsSH2 domainGrb-2Thermogenic differentiationFetal brown adipose tissueReceptor substrateFusion proteinInsulin-like growth factorInsulin Receptor Substrate-1 is the Predominant Signaling Molecule Activated by Insulin-like Growth Factor-I, Insulin, and Interleukin-4 in Estrogen Receptor-positive Human Breast Cancer Cells*
Jackson J, White M, Yee D. Insulin Receptor Substrate-1 is the Predominant Signaling Molecule Activated by Insulin-like Growth Factor-I, Insulin, and Interleukin-4 in Estrogen Receptor-positive Human Breast Cancer Cells*. Journal Of Biological Chemistry 1998, 273: 9994-10003. PMID: 9545345, DOI: 10.1074/jbc.273.16.9994.Peer-Reviewed Original ResearchMeSH KeywordsAndrostadienesBreast NeoplasmsCalcium-Calmodulin-Dependent Protein KinasesEnzyme InhibitorsFemaleFlavonoidsHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IInterleukin-4Intracellular Signaling Peptides and ProteinsKineticsMitogen-Activated Protein Kinase KinasesPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphoproteinsPhosphorylationPhosphotyrosineProtein Kinase InhibitorsProtein KinasesReceptor, InsulinReceptors, EstrogenSignal TransductionTumor Cells, CulturedWortmanninConceptsIRS-1Tyrosine phosphorylationIRS-2Insulin-like growth factorBreast cancer cellsIGF-I treatmentGreater tyrosine phosphorylationInterleukin-4Substrate adaptor proteinMitogen-activated protein kinase activityCancer cellsCell linesInsulin receptor substrate-1Mitogen-activated protein kinaseP85 regulatory subunitProtein kinase activityActivation of phosphatidylinositolReceptor substrate-1Estrogen receptor-positive human breast cancer cellsGrowth factorPrimary breast tumor specimensIGF-stimulated growthAdaptor proteinRegulatory subunitT47-D breast cancer cells
1997
Interaction of wild type and dominant-negative p55PIK regulatory subunit of phosphatidylinositol 3-kinase with insulin-like growth factor-1 signaling proteins.
Mothe I, Delahaye L, Filloux C, Pons S, White M, Van Obberghen E. Interaction of wild type and dominant-negative p55PIK regulatory subunit of phosphatidylinositol 3-kinase with insulin-like growth factor-1 signaling proteins. Endocrinology 1997, 11: 1911-23. PMID: 9415396, DOI: 10.1210/mend.11.13.0029.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBiological TransportFungal ProteinsGenes, ReporterGlucoseInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IMutagenesis, Site-DirectedPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationPrecipitin TestsReceptor, IGF Type 1Recombinant Fusion ProteinsSaccharomyces cerevisiaeSignal TransductionConceptsTwo-hybrid systemInsulin receptor substrate-1Receptor substrate-1Regulatory subunitSubstrate-1Src homology 2 domainInter-SH2 domainProtein-protein interactionsInhibitor of PIAmino acids 203Dominant negative mutantInsulin-stimulated glucose transportIGF-IRInsulin-like growth factor 1 receptorNH2 terminus regionDominant negative actionGrowth factor 1 receptorP110alpha catalytic subunitIGF-I stimulationSH2 domainFactor 1 receptorCatalytic subunitTyrosine phosphorylationWild typeP55PIKThe IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors.
Uddin S, Fish E, Sher D, Gardziola C, Colamonici O, Kellum M, Pitha P, White M, Platanias L. The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood 1997, 90: 2574-82. PMID: 9326223.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBurkitt LymphomaDNA-Binding ProteinsHematopoietic Stem CellsHumansInsulinInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IInterferon-alphaIntracellular Signaling Peptides and ProteinsLeukemia, Myelomonocytic, AcuteLeukemia-Lymphoma, Adult T-CellMiceMultiple MyelomaNeoplasm ProteinsPhosphoproteinsReceptor, InsulinReceptor, Interferon alpha-betaReceptors, InterferonSignal TransductionSrc Homology DomainsSTAT1 Transcription FactorSTAT2 Transcription FactorSTAT3 Transcription FactorTrans-ActivatorsTumor Cells, CulturedConceptsSTAT pathwaySH2 domainHematopoietic cellsInsulin/insulin-like growth factorIRS pathwayDistinct downstream signalsTHP-1 cellsIRS-1 functionInsulin/IGFActivator of transcriptionInsulin receptor substrateDistinct signalsIFN-alphaHuman myelomonocytic cellsDocking proteinMouse myeloid cellsGrb-2P85 subunitInterferon alpha receptorSTAT-2Receptor substrateVesicular stomatitis virusSignal transducerIRS-2IRS-1
1996
Insulin-like growth factor-1 induces rapid tyrosine phosphorylation of the vav proto-oncogene product.
Uddin S, Yetter A, Katzav S, Hofmann C, White M, Platanias L. Insulin-like growth factor-1 induces rapid tyrosine phosphorylation of the vav proto-oncogene product. Experimental Hematology 1996, 24: 622-7. PMID: 8605967.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCell LineHumansInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsMicePhosphoproteinsPhosphorylationPhosphotyrosineProtein-Tyrosine KinasesProto-Oncogene MasProto-Oncogene ProteinsProto-Oncogene Proteins c-vavSignal TransductionConceptsSrc homology 2 domainVav proto-oncogene productGuanine exchange factorAntiphosphotyrosine monoclonal antibodyProto-oncogene productInsulin-like growth factor 1 receptorIGF-1 stimulationGrowth factor 1 receptorHematopoietic cell proliferationFactor 1 receptorExchange factorSH3 domainTyrosine phosphorylationPhosphorylation statusLigand bindingMediate signalsHematopoietic cellsImmunoblotting experimentsHematopoietic originCell proliferationCell linesHuman myeloma cell linesMyeloma cell linesCellsPhosphorylation