Differential Regulation of Insulin Receptor Substrate-2 and Mitogen-Activated Protein Kinase Tyrosine Phosphorylation by Phosphatidylinositol 3-Kinase Inhibitors in SH-SY5Y Human Neuroblastoma Cells**This work was supported by NIH Grants R29-NS-32843 and R01-NS-36778, grants from the American Diabetes Association and Juvenile Diabetes Foundation (to E.L.F.), and a grant from the Millie Schembechler Adrenal Research Fund of the University of Michigan Comprehensive Cancer Center (to E.L.F. and P.S.L.).
Kim B, Leventhal P, White M, Feldman E. Differential Regulation of Insulin Receptor Substrate-2 and Mitogen-Activated Protein Kinase Tyrosine Phosphorylation by Phosphatidylinositol 3-Kinase Inhibitors in SH-SY5Y Human Neuroblastoma Cells**This work was supported by NIH Grants R29-NS-32843 and R01-NS-36778, grants from the American Diabetes Association and Juvenile Diabetes Foundation (to E.L.F.), and a grant from the Millie Schembechler Adrenal Research Fund of the University of Michigan Comprehensive Cancer Center (to E.L.F. and P.S.L.). Endocrinology 1998, 139: 4881-4889. DOI: 10.1210/en.139.12.4881.Peer-Reviewed Original ResearchIRS-2 tyrosine phosphorylationInsulin receptor substrate-2PI 3-K inhibitorsPI-3KTyrosine phosphorylationMitogen-activated protein kinase activationProtein kinase activityPhosphorylation of insulin receptor substrate-2Kinase activityAssociation of Grb2SH-SY5YSH-SY5Y human neuroblastoma cellsNeurite outgrowthPhosphatidylinositol 3-kinasePhosphatidylinositol 3-kinase inhibitorDownstream signaling moleculesSurvival of neuronal cellsHuman neuroblastoma cellsSerine/threonine phosphorylationIRS-1Negative regulatorGrb2Signaling moleculesDifferential regulationPhosphorylation