2008
Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle
Morino K, Neschen S, Bilz S, Sono S, Tsirigotis D, Reznick RM, Moore I, Nagai Y, Samuel V, Sebastian D, White M, Philbrick W, Shulman GI. Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle. Diabetes 2008, 57: 2644-2651. PMID: 18633112, PMCID: PMC2551673, DOI: 10.2337/db06-0454.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmino Acid SubstitutionAnimalsBlotting, WesternDietary FatsFemaleGlucose Clamp TechniqueGlucose Tolerance TestImmunoprecipitationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceMaleMiceMice, Inbred C57BLMice, TransgenicMuscle, SkeletalPhosphorylationSerineTriglyceridesConceptsSerine phosphorylationIRS-1IRS-1-associated phosphatidylinositolSkeletal muscleInsulin-stimulated IRS-1-associated phosphatidylinositolWild-type transgenic miceFat-induced insulin resistanceInsulin receptor substrateTransgenic miceReceptor substrateInsulin signalingAkt phosphorylationPhosphorylationCellular mechanismsCritical roleGlucose uptakeHigh-fat feedingInsulin resistanceMuscle glucose uptakeInsulin actionVivoSerInsulin-stimulated muscle glucose uptakeImportant rolePhosphatidylinositol
2007
Phosphorylation of Irs1 at SER-522 Inhibits Insulin Signaling
Giraud J, Haas M, Feener E, Copps K, Dong X, Dunn S, White M. Phosphorylation of Irs1 at SER-522 Inhibits Insulin Signaling. Endocrinology 2007, 21: 2294-2302. PMID: 17579213, DOI: 10.1210/me.2007-0159.Peer-Reviewed Original ResearchConceptsTyrosine phosphorylationInsulin-stimulated tyrosine phosphorylationInsulin-stimulated IRS1 tyrosine phosphorylationIRS1 tyrosine phosphorylationInsulin-stimulated phosphorylationPhosphorylation of IRS1Threonine residuesMultisite phosphorylationPhosphorylation sitesPhosphoserine antibodyInhibits InsulinL6 myoblastsPhosphorylationCultured cellsIRS1Akt expressionPhosphatidylinositolFunctional effectsMass spectrometryPD98059WortmanninMyoblastsMyotubesRNASerine
2005
Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*
Kushner J, Simpson L, Wartschow L, Guo S, Rankin M, Parsons R, White M. Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*. Journal Of Biological Chemistry 2005, 280: 39388-39393. PMID: 16170201, DOI: 10.1074/jbc.m504155200.Peer-Reviewed Original ResearchConceptsInsulin/insulin-like growth factorWild typeIrs2 branchBeta-cell growthInsulin-like growth factorPhosphatase PTENGrowth factorFoxO1 phosphorylationBeta-cell massPTEN expressionAktPTENCascadeSmall isletsGlucose homeostasisInsulin productionGrowthIslet growthSufficient insulinPhosphatidylinositolTolerancePhosphorylationMiceSignalingHomeostasisInsulin Receptor Substrate 2 Plays Diverse Cell-specific Roles in the Regulation of Glucose Transport*
Sadagurski M, Weingarten G, Rhodes C, White M, Wertheimer E. Insulin Receptor Substrate 2 Plays Diverse Cell-specific Roles in the Regulation of Glucose Transport*. Journal Of Biological Chemistry 2005, 280: 14536-14544. PMID: 15705592, DOI: 10.1074/jbc.m410227200.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAnimalsBiological TransportDeoxyglucoseEpidermisFibroblastsGenotypeGlucoseHomozygoteImmunoblottingImmunoprecipitationInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsKeratinocytesMiceMice, KnockoutPhosphatidylinositol 3-KinasesPhosphoproteinsSkinThymidineTime FactorsConceptsIRS-2Glucose transportInsulin receptor substrate-2 proteinInsulin-induced glucose transportInsulin receptor substrate 2Insulin-stimulated glucose transportIRS-1 proteinCell specific associationIRS-2 proteinClassical insulin target tissuesCell-specific mannerSkin epidermal keratinocytesIRS-PICell-specific rolePositive regulatorInsulin target tissuesCell physiologyDermal fibroblastsKO cellsEpidermal keratinocytesAkt activationPhosphatidylinositolSubstrate 2Insulin receptorProtein
2003
Molecular Mechanisms of Insulin Resistance in IRS-2-Deficient Hepatocytes
Valverde A, Burks D, Fabregat I, Fisher T, Carretero J, White M, Benito M. Molecular Mechanisms of Insulin Resistance in IRS-2-Deficient Hepatocytes. Diabetes 2003, 52: 2239-2248. PMID: 12941762, DOI: 10.2337/diabetes.52.9.2239.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAnimalsAnimals, NewbornAntigens, Polyomavirus TransformingCell Line, TransformedFemaleForkhead Box Protein O1Forkhead Transcription FactorsGluconeogenesisGlucose-6-PhosphataseGlycogen SynthaseGlycogen Synthase Kinase 3HepatocytesHypoglycemic AgentsInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIsoenzymesMaleMiceMice, Mutant StrainsPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphoenolpyruvate Carboxykinase (GTP)PhosphoproteinsPregnancyProtein Kinase CProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRetroviridaeSignal TransductionTranscription FactorsConceptsGluconeogenic gene expressionIRS-2Gene expressionPrimary hepatocytesAtypical protein kinase CIRS-1-associated phosphatidylinositolIRS-1 tyrosine phosphorylationInsulin-induced phosphatidylinositolTranslocation of phosphatidylinositolInsulin receptor substrateGlycogen synthase kinaseProtein kinase CActivation of AktDownstream phosphatidylinositolTyrosine phosphorylationPlasma membraneReceptor substrateGlycogen synthase activityMolecular mechanismsSynthase kinaseInsulin stimulationKinase CHepatocyte cell linePhosphatidylinositolFunctional insulinEssential role of protein kinase Cζ in the impairment of insulin‐induced glucose transport in IRS‐2‐deficient brown adipocytes
Arribas M, Valverde A, Burks D, Klein J, Farese R, White M, Benito M. Essential role of protein kinase Cζ in the impairment of insulin‐induced glucose transport in IRS‐2‐deficient brown adipocytes. FEBS Letters 2003, 536: 161-166. PMID: 12586357, DOI: 10.1016/s0014-5793(03)00049-8.Peer-Reviewed Original ResearchConceptsGLUT4 translocationIRS-2/PIBrown adipocytesInsulin-induced glucose transportProtein kinase C zetaIRS-2-associated phosphatidylinositolKinase-inactive mutantGlucose uptakeWild-type cellsProtein kinase CζEssential roleInsulin receptor substrate-2-deficient (IRS2(-/-)) miceC zetaPKC-zetaMolecular mechanismsIRS-2Impaired glucose uptakeGlucose transportAdipocytesTranslocationCellsUptakeMutantsPhosphatidylinositolCζ
2002
Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle*
Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI. Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle*. Journal Of Biological Chemistry 2002, 277: 50230-50236. PMID: 12006582, DOI: 10.1074/jbc.m200958200.Peer-Reviewed Original ResearchConceptsIRS-1 tyrosine phosphorylationInsulin receptor substrate-1PI3-kinase activityReceptor substrate-1IRS-1Tyrosine phosphorylationSubstrate-1Insulin activationIRS-1-associated PI3-kinase activityInsulin-stimulated IRS-1 tyrosine phosphorylationInsulin-stimulated glucose transport activityProtein kinase CGlucose transport activityFatty acidsLipid infusionFatty acyl-CoAsDAG concentrationKinase CTransport activityPKC-thetaPhosphorylationIntracellular ceramideAcyl-CoAsTime-dependent fashionPhosphatidylinositol
2000
IRS-4 Mediates Protein Kinase B Signaling during Insulin Stimulation without Promoting Antiapoptosis
Uchida T, Myers M, White M. IRS-4 Mediates Protein Kinase B Signaling during Insulin Stimulation without Promoting Antiapoptosis. Molecular And Cellular Biology 2000, 20: 126-138. PMID: 10594015, PMCID: PMC85068, DOI: 10.1128/mcb.20.1.126-138.2000.Peer-Reviewed Original ResearchConceptsPKB/AktProtein kinase BIRS-1IRS-2IRS-4Insulin stimulationGrb-2Bad phosphorylationInsulin-stimulated mitogen-activated protein kinase activityInsulin receptor substrate (IRS) proteinsProtein kinase B signalingMitogen-activated protein kinase activityProtein kinase activityHuman insulin receptorPhosphorylation of BadKinase B signalingSubstrate proteinsMyeloid progenitor cellsApoptosis of cellsKinase activityKinase BPhosphatidylinositolInsulin receptorInterleukin-3Phosphorylation
1999
Endothelin-1 modulates insulin signaling through phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells.
Jiang Z, Zhou Q, Chatterjee A, Feener E, Myers M, White M, King G. Endothelin-1 modulates insulin signaling through phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells. Diabetes 1999, 48: 1120-1130. PMID: 10331419, DOI: 10.2337/diabetes.48.5.1120.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEndothelin Receptor AntagonistsEndothelin-1Enzyme InhibitorsGTP-Binding ProteinsHumansInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsMaleMuscle, Smooth, VascularPeptides, CyclicPertussis ToxinPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphoproteinsPhosphoserineProtein Kinase CRatsRats, ZuckerSignal TransductionTetradecanoylphorbol AcetateVirulence Factors, BordetellaConceptsInsulin-stimulated phosphatidylinositolProtein kinase CIRS-2P85 subunitSerine phosphorylationSmooth muscle cellsInsulin receptor beta subunitInsulin-induced phosphatidylinositolInsulin receptor substrateReceptor beta subunitMuscle cellsTreatment of cellsArterial smooth muscle cellsReceptor substratePretreatment of cellsVascular smooth muscle cellsBeta subunitKinase CPhosphatidylinositolIndependent pathwaysSpecific inhibitorET-1SubunitsPhosphorylationPathway
1998
Differential Regulation of Insulin Receptor Substrate-2 and Mitogen-Activated Protein Kinase Tyrosine Phosphorylation by Phosphatidylinositol 3-Kinase Inhibitors in SH-SY5Y Human Neuroblastoma Cells*This work was supported by NIH Grants R29-NS-32843 and R01-NS-36778, grants from the American Diabetes Association and Juvenile Diabetes Foundation (to E.L.F.), and a grant from the Millie Schembechler Adrenal Research Fund of the University of Michigan Comprehensive Cancer Center (to E.L.F. and P.S.L.).
Kim B, Leventhal P, White M, Feldman E. Differential Regulation of Insulin Receptor Substrate-2 and Mitogen-Activated Protein Kinase Tyrosine Phosphorylation by Phosphatidylinositol 3-Kinase Inhibitors in SH-SY5Y Human Neuroblastoma Cells*This work was supported by NIH Grants R29-NS-32843 and R01-NS-36778, grants from the American Diabetes Association and Juvenile Diabetes Foundation (to E.L.F.), and a grant from the Millie Schembechler Adrenal Research Fund of the University of Michigan Comprehensive Cancer Center (to E.L.F. and P.S.L.). Endocrinology 1998, 139: 4881-4889. PMID: 9832424, DOI: 10.1210/endo.139.12.6348.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdaptor Proteins, Vesicular TransportCalcium-Calmodulin-Dependent Protein KinasesElectrophoresis, Polyacrylamide GelEnzyme InhibitorsGRB2 Adaptor ProteinHumansInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIsoenzymesMitogen-Activated Protein Kinase 1NeuritesNeuroblastomaPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphoproteinsPhosphorylationProteinsShc Signaling Adaptor ProteinsSrc Homology 2 Domain-Containing, Transforming Protein 1Tumor Cells, CulturedTyrosineConceptsInsulin receptor substrate 2IRS-2 tyrosine phosphorylationMitogen-activated protein kinase activationTyrosine phosphorylationProtein kinase activationKinase activationSerine/threonine phosphorylationSubstrate 2Association of Grb2Neurite outgrowthSH-SY5Y human neuroblastomaThreonine phosphorylationNegative regulationSH-SY5Y human neuroblastoma cellsIRS-1Grb2Nervous system growthDifferential regulationPhosphorylationHuman neuroblastoma cellsNeuronal cellsPhosphatidylinositolPI 3Concentration-dependent mannerInsulin-like growth factor I
1997
Calmodulin Activates Phosphatidylinositol 3-Kinase*
Joyal J, Burks D, Pons S, Matter W, Vlahos C, White M, Sacks D. Calmodulin Activates Phosphatidylinositol 3-Kinase*. Journal Of Biological Chemistry 1997, 272: 28183-28186. PMID: 9353264, DOI: 10.1074/jbc.272.45.28183.Peer-Reviewed Original ResearchConceptsSrc homology 2 domainIntact cellsPhosphorylation of phosphatidylinositolActivates PhosphatidylinositolVesicular traffickingEukaryotic cellsEffector proteinsRegulatory subunitCytoskeletal organizationUbiquitous Ca2PhosphatidylinositolIntracellular eventsNovel mechanismAffinity chromatographyGrowth factorCalmodulinCalmodulin antagonistsMultiple processesCellsCoimmunoprecipitationDirect linkPhosphorylationTraffickingSubunitsCa2Activation of the phosphatidylinositol 3-kinase serine kinase by IFN-alpha.
Uddin S, Fish E, Sher D, Gardziola C, White M, Platanias L. Activation of the phosphatidylinositol 3-kinase serine kinase by IFN-alpha. The Journal Of Immunology 1997, 158: 2390-7. PMID: 9036989, DOI: 10.4049/jimmunol.158.5.2390.Peer-Reviewed Original ResearchConceptsSerine kinaseTreatment of cellsIRS-1Kinase assaysSerine kinase activityDual-specificity enzymeP85 regulatory subunitReceptor-generated signalsIRS-1 proteinJak-1 kinasesIFN-alpha-induced activationProtein associatesP85 subunitPhosphoaminoacid analysisRegulatory subunitSerine residuesSerine phosphorylationTyrosine phosphorylationTyk-2STAT-2MAP kinaseKinase activityPretreatment of cellsInhibitor wortmanninPhosphatidylinositol
1996
Growth Hormone, Interferon-γ, and Leukemia Inhibitory Factor Utilize Insulin Receptor Substrate-2 in Intracellular Signaling*
Argetsinger L, Norstedt G, Billestrup N, White M, Carter-Su C. Growth Hormone, Interferon-γ, and Leukemia Inhibitory Factor Utilize Insulin Receptor Substrate-2 in Intracellular Signaling*. Journal Of Biological Chemistry 1996, 271: 29415-29421. PMID: 8910607, DOI: 10.1074/jbc.271.46.29415.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsCHO CellsCricetinaeGrowth InhibitorsHuman Growth HormoneHumansInsulin Receptor Substrate ProteinsInterferon-gammaInterleukin-6Intracellular Signaling Peptides and ProteinsLeukemia Inhibitory FactorLymphokinesMicePhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationPhosphotransferases (Alcohol Group Acceptor)Signal TransductionTyrosineConceptsInsulin receptor substrate 2Tyrosyl phosphorylationLeukemia inhibitory factorProtein tyrosine phosphatase SHP2Substrate 2JAK2 associationPhosphatase SHP2Regulatory subunitJAK kinasesMaximal phosphorylationTyrosine phosphorylationTyrosine residuesIntracellular signalingPhosphorylationMultiple membersGH receptorInhibitory factorCytokine familyGrowth hormoneReceptorsSHP2KinasePhosphatidylinositolSubstantial signalThe Drosophila Insulin Receptor Activates Multiple Signaling Pathways but Requires Insulin Receptor Substrate Proteins for DNA Synthesis
Yenush L, Fernandez R, Myers M, Grammer T, Sun X, Blenis J, Pierce J, Schlessinger J, White M. The Drosophila Insulin Receptor Activates Multiple Signaling Pathways but Requires Insulin Receptor Substrate Proteins for DNA Synthesis. Molecular And Cellular Biology 1996, 16: 2509-2517. PMID: 8628319, PMCID: PMC231240, DOI: 10.1128/mcb.16.5.2509.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCalcium-Calmodulin-Dependent Protein KinasesCell DivisionCell LineDNADrosophila melanogasterEnzyme ActivationHumansInsulinInsulin Receptor Substrate ProteinsMolecular Sequence DataPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationPhosphotransferases (Alcohol Group Acceptor)PhosphotyrosineProtein Serine-Threonine KinasesReceptor, InsulinRecombinant ProteinsRibosomal Protein S6 KinasesSequence Homology, Amino AcidSignal TransductionThymidineConceptsDrosophila insulin receptorHuman insulin receptorInsulin receptor substrate (IRS) proteinsIRS-1Insulin receptorSubstrate proteinsTyrosine phosphorylation sitesMitogen-activated protein kinaseInsulin-stimulated mitogenesisMultiple signaling pathwaysIRS proteinsMammalian counterpartsYXXM motifsPhosphorylation sitesMammalian cellsTyrosine autophosphorylationProtein kinaseTyrosine phosphorylationSignaling pathwaysPhosphatidylinositolTerminal extensionDNA synthesisProteinHDIRP70S6k