2018
Receptor Tyrosine Kinases and the Insulin Signaling System
White M. Receptor Tyrosine Kinases and the Insulin Signaling System. Endocrinology 2018, 121-155. DOI: 10.1007/978-3-319-44675-2_7.Peer-Reviewed Original ResearchProtein tyrosine kinasesTyrosine kinaseExtracellular ligand-binding domainLarge multigene familyRTK family membersInsulin Signaling SystemCell-cell interactionsLigand-binding domainReceptor tyrosine kinasesSystemic nutrient homeostasisPolypeptide growth factorsAspects of metabolismMultigene familyHuman genomeNutrient homeostasisPlasma membraneIntracellular signalsMetabolic regulationSignaling systemInsulin receptorBroader roleHeterologous regulationCell proliferationKinaseGrowth factor
2017
Receptor Tyrosine Kinases and the Insulin Signaling System
White M. Receptor Tyrosine Kinases and the Insulin Signaling System. Endocrinology 2017, 1-34. DOI: 10.1007/978-3-319-27318-1_7-1.Peer-Reviewed Original ResearchProtein tyrosine kinasesTyrosine kinaseExtracellular ligand-binding domainLarge multigene familyRTK family membersInsulin Signaling SystemCell-cell interactionsLigand-binding domainReceptor tyrosine kinasesSystemic nutrient homeostasisPolypeptide growth factorsAspects of metabolismMultigene familyHuman genomeNutrient homeostasisPlasma membraneIntracellular signalsMetabolic regulationSignaling systemInsulin receptorBroader roleHeterologous regulationCell proliferationKinaseGrowth factor
2016
IRS proteins and diabetic complications
Lavin D, White M, Brazil D. IRS proteins and diabetic complications. Diabetologia 2016, 59: 2280-2291. PMID: 27514532, PMCID: PMC5506098, DOI: 10.1007/s00125-016-4072-7.Peer-Reviewed Original ResearchConceptsIRS proteinsType 2 diabetesDiabetic complicationsMitogen-activated protein kinaseElicit cellular responsesCoronary artery diseaseElevated blood glucoseComplications of diabetesProtein kinaseDownstream effectorsAdaptor moleculeInsulin signalingCellular responsesNumber of organsInsulin receptorMacrovascular complicationsMicrovascular complicationsArtery diseasePatient morbidityBlood glucoseProteinMale micePatient outcomesCell proliferationComplications
2002
The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth
Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs W, Wright C, White M, Arden K, Accili D. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. Journal Of Clinical Investigation 2002, 110: 1839-1847. PMID: 12488434, PMCID: PMC151657, DOI: 10.1172/jci16857.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCell NucleusDiabetes Mellitus, Type 2Epithelial CellsForkhead Box Protein O1Forkhead Transcription FactorsGenes, ReporterHomeodomain ProteinsHumansInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsIslets of LangerhansKidneyMiceMice, KnockoutMicroscopy, FluorescencePancreasPhosphoproteinsPromoter Regions, GeneticProtein IsoformsReceptor, InsulinSignal TransductionTrans-ActivatorsTranscription FactorsConceptsBeta-cell failureBeta-cell proliferationBeta cellsInsulin-producing beta cellsBeta-cell massCell proliferationInsulin receptor substrate 2Pdx1 expressionPancreatic β-cell growthΒ-cell growthTranscription factor FOXO1Pancreatic ductSubset of cellsForkhead transcription factor FOXO1Cell failureNuclear expressionInsulin/IGFRelative deficiencyMutant FoxO1Pdx1 promoterProgenitor cellsFOXO1Gene 1InsulinMiceDefective insulin secretion in pancreatic β cells lacking type 1 IGF receptor
Xuan S, Kitamura T, Nakae J, Politi K, Kido Y, Fisher P, Morroni M, Cinti S, White M, Herrera P, Accili D, Efstratiadis A. Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. Journal Of Clinical Investigation 2002, 110: 1011-1019. PMID: 12370279, PMCID: PMC151144, DOI: 10.1172/jci15276.Peer-Reviewed Original ResearchConceptsType 1 IGF receptorBeta-cell massDefective insulin secretionInsulin secretionIGF receptorInsulin releaseInadequate compensatory increaseGlucose-dependent insulin releaseBeta-cell proliferationAge-dependent impairmentPancreatic β-cellsGlucose toleranceDecrease of glucoseBeta cellsType 2Compensatory increaseCell massΒ-cellsReceptor tyrosine kinasesSecretionCell proliferationAntiapoptotic roleReceptorsTyrosine kinaseConditional mutagenesis
1999
Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling.
Cousin S, Hügl S, Myers M, White M, Reifel-Miller A, Rhodes C. Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochemical Journal 1999, 344 Pt 3: 649-58. PMID: 10585851, PMCID: PMC1220686, DOI: 10.1042/0264-6021:3440649.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdaptor Proteins, Vesicular TransportAnimalsCell DivisionCell LineDNA-Binding ProteinsGlucoseGRB2 Adaptor ProteinGrowth HormoneInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansJanus Kinase 2Milk ProteinsMitogen-Activated Protein KinasesPhosphoproteinsPhosphorylationProteinsProtein-Tyrosine KinasesProto-Oncogene ProteinsRatsRibosomal Protein S6 KinasesShc Signaling Adaptor ProteinsSignal TransductionSon of Sevenless Protein, DrosophilaSrc Homology 2 Domain-Containing, Transforming Protein 1STAT5 Transcription FactorTrans-ActivatorsConceptsINS-1 cell proliferationSignal transduction pathwaysSignal transductionCell proliferationKinase 2Sevenless-1 proteinMitogenic signal transduction pathwaysJAK2/STAT5 pathwayMitogen-activated protein kinaseInsulin receptor substrateBeta-cell proliferationRat growth hormoneJAK2/STAT5Pancreatic beta cell proliferationMitogenic signalingS6 kinaseProtein kinaseProtein associationTranscription 5Beta-cell lineReceptor substrateDifferent mitogenicRat beta-cell lineDownstream activationIRS-2Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling
COUSIN S, HülGL S, MYERS M, WHITE M, REIFEL-MILLER A, RHODES C. Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochemical Journal 1999, 344: 649-658. DOI: 10.1042/bj3440649.Peer-Reviewed Original ResearchINS-1 cell proliferationSignal transduction pathwaysΒ-cell proliferationSignal transductionCell proliferationKinase 2Sevenless-1 proteinMitogenic signal transduction pathwaysJAK2/STAT5 pathwayΒ-cellsMitogen-activated protein kinaseRat growth hormoneJAK2/STAT5Rat β-cell linePancreatic β-cell proliferationΒ-cell lineMitogenic signalingS6 kinaseProtein kinaseProtein associationTranscription 5Pancreatic β-cellsReceptor substrateKinase activationDifferent mitogenic
1998
Insulin-like Growth Factor I (IGF-I)-stimulated Pancreatic β-Cell Growth Is Glucose-dependent SYNERGISTIC ACTIVATION OF INSULIN RECEPTOR SUBSTRATE-MEDIATED SIGNAL TRANSDUCTION PATHWAYS BY GLUCOSE AND IGF-I IN INS-1 CELLS*
Hügl S, White M, Rhodes C. Insulin-like Growth Factor I (IGF-I)-stimulated Pancreatic β-Cell Growth Is Glucose-dependent SYNERGISTIC ACTIVATION OF INSULIN RECEPTOR SUBSTRATE-MEDIATED SIGNAL TRANSDUCTION PATHWAYS BY GLUCOSE AND IGF-I IN INS-1 CELLS*. Journal Of Biological Chemistry 1998, 273: 17771-17779. PMID: 9651378, DOI: 10.1074/jbc.273.28.17771.Peer-Reviewed Original ResearchConceptsInsulin-like growth factor IGrowth factor IBeta-cell proliferationINS-1 cell proliferationCell proliferationFactor IMM glucoseCombination of IGFPancreatic β-cell growthPancreatic beta-cell lineBeta-cell lineΒ-cell growthINS-1 cellsNM IGFBeta-cell mitogenesisCertain growth factorsSignaling mechanismSignal transduction pathwaysGlucose metabolismIGFCell proliferation rateGrowth factorIRS-2Transduction pathwaysGlucose concentration
1996
Insulin-like growth factor-1 induces rapid tyrosine phosphorylation of the vav proto-oncogene product.
Uddin S, Yetter A, Katzav S, Hofmann C, White M, Platanias L. Insulin-like growth factor-1 induces rapid tyrosine phosphorylation of the vav proto-oncogene product. Experimental Hematology 1996, 24: 622-7. PMID: 8605967.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCell LineHumansInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsMicePhosphoproteinsPhosphorylationPhosphotyrosineProtein-Tyrosine KinasesProto-Oncogene MasProto-Oncogene ProteinsProto-Oncogene Proteins c-vavSignal TransductionConceptsSrc homology 2 domainVav proto-oncogene productGuanine exchange factorAntiphosphotyrosine monoclonal antibodyProto-oncogene productInsulin-like growth factor 1 receptorIGF-1 stimulationGrowth factor 1 receptorHematopoietic cell proliferationFactor 1 receptorExchange factorSH3 domainTyrosine phosphorylationPhosphorylation statusLigand bindingMediate signalsHematopoietic cellsImmunoblotting experimentsHematopoietic originCell proliferationCell linesHuman myeloma cell linesMyeloma cell linesCellsPhosphorylation