2016
Mechanism of Insulin Action
White M. Mechanism of Insulin Action. 2016, 114-132. DOI: 10.1002/9781118924853.ch8.Peer-Reviewed Original ResearchInsulin-like signalingGenome-wide association studiesInsulin-like peptidesClassical insulin target tissuesInsulin-like growth factor 2Receptor tyrosine kinasesSimilar receptor tyrosine kinasesEnvironmental signalsHuman genomeInsulin target tissuesGenetic lociPancreatic β-cellsInsulin signalTyrosine kinaseAssociation studiesRelease of nutrientsConflicting signalsGrowth factor 2IGF signalingAnimal growthFactor 1Factor 2Insulin-like growth factor-1Β-cellsGenesTrimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice
Kuznetsova A, Yu Y, Hollister-Lock J, Opare-Addo L, Rozzo A, Sadagurski M, Norquay L, Reed J, Khattabi I, Bonner-Weir S, Weir G, Sharma A, White M. Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice. JCI Insight 2016, 1: e80749. PMID: 27152363, PMCID: PMC4854304, DOI: 10.1172/jci.insight.80749.Peer-Reviewed Original ResearchInsulin receptor substrate 2Progression of diabetesΒ-cell growthHuman isletsΒ-cellsHuman islet transplantsIsolated human pancreatic isletsAdverse systemic effectsFirst-generation antihistaminesHistamine H1 receptorsΒ-cell replicationPancreatic β-cell growthAnti-CD3 AbPancreatic β-cellsHuman pancreatic isletsNuclear Pdx1NOD miceIslet transplantsDiabetic miceCell growthH1 receptorsIslet massIRS2 expressionDownstream signaling cascadesGlucose homeostasis
2013
Direct Autocrine Action of Insulin on β-Cells: Does It Make Physiological Sense?
Rhodes C, White M, Leahy J, Kahn S. Direct Autocrine Action of Insulin on β-Cells: Does It Make Physiological Sense? Diabetes 2013, 62: 2157-2163. PMID: 23801714, PMCID: PMC3712043, DOI: 10.2337/db13-0246.Peer-Reviewed Original ResearchConceptsΒ-cellsDirect autocrine effectsTransgenic mouse studiesSignal transductionPancreatic β-cellsDownstream elementsAutocrine actionRelevant ligandsΒ-cell functionAutocrine effectsMouse studiesCircumstantial evidencePhysiological senseTransductionAvailable experimental evidencePathwayInsightsExperimental evidenceInsulinChronic activation of a designer Gq-coupled receptor improves β cell function
Jain S, de Azua I, Lu H, White M, Guettier J, Wess J. Chronic activation of a designer Gq-coupled receptor improves β cell function. Journal Of Clinical Investigation 2013, 123: 1750-1762. PMID: 23478411, PMCID: PMC3613926, DOI: 10.1172/jci66432.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell ProliferationClozapineDiabetes Mellitus, ExperimentalDrug Evaluation, PreclinicalFemaleGene ExpressionGTP-Binding Protein alpha Subunits, Gq-G11Hypoglycemic AgentsInsulin Receptor Substrate ProteinsInsulin-Secreting CellsMaleMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, TransgenicMolecular Targeted TherapyMuscarinic AgonistsProtein EngineeringReceptor, Muscarinic M3Receptors, G-Protein-CoupledRecombinant ProteinsConceptsΒ-cell functionΒ-cellsCell functionPancreatic β-cell functionStreptozotocin-induced diabetesBeneficial metabolic effectsTreatment of T2D.High-fat dietType 2 diabetesNovel antidiabetic drugsType G proteinsClasses of receptorsChronic stimulationMetabolic deficitsAntidiabetic drugsMetabolic effectsChronic activationGlucose homeostasisTherapeutic strategiesCell pathwaysEnhanced expressionReceptorsNumerous receptorsCellular effectsDiabetes
2010
Targeting Forkhead Box O1 from the Concept to Metabolic Diseases: Lessons from Mouse Models
Cheng Z, White M. Targeting Forkhead Box O1 from the Concept to Metabolic Diseases: Lessons from Mouse Models. Antioxidants & Redox Signaling 2010, 14: 649-661. PMID: 20615072, PMCID: PMC3025764, DOI: 10.1089/ars.2010.3370.Peer-Reviewed Original ResearchConceptsForkhead box O (FOXO) transcription factorsInsulin receptor substratePhosphoenolpyruvate carboxykinaseActivation of FOXO1Β-cellsRegulation of metabolismAkt signal cascadeRole of FoxO1Transcriptional regulationForkhead box O1Β-cell proliferationStress resistanceTranscription factorsDuodenal homeobox 1Mitochondrial metabolismPancreatic β-cellsReceptor substrateSignal cascadeΒ-cell failureLipid switchesCarboxypeptidase E.Mouse modelHomeobox 1Metabolic diseasesInhibition of FOXO1Extreme makeover of pancreatic α-cells
Zaret K, White M. Extreme makeover of pancreatic α-cells. Nature 2010, 464: 1132-1133. PMID: 20414295, PMCID: PMC3982719, DOI: 10.1038/4641132a.Peer-Reviewed Original Research
2008
The Relationship Between the Insulin Receptor Substrates and Metabolic Disease
White M. The Relationship Between the Insulin Receptor Substrates and Metabolic Disease. Contemporary Endocrinology 2008, 255-278. DOI: 10.1007/978-1-60327-116-5_14.Peer-Reviewed Original Research
2005
Alterations in growth and apoptosis of insulin receptor substrate-1-deficient β-cells
Hennige A, Ozcan U, Okada T, Jhala U, Schubert M, White M, Kulkarni R. Alterations in growth and apoptosis of insulin receptor substrate-1-deficient β-cells. AJP Endocrinology And Metabolism 2005, 289: e337-e346. PMID: 15827066, DOI: 10.1152/ajpendo.00032.2004.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsApoptosisCell ProliferationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansIslets of Langerhans TransplantationKidneyMaleMiceMice, Inbred C57BLMice, KnockoutPhosphoproteinsSignal TransductionConceptsInsulin resistanceInsulin receptor substrateWT recipientsInsulin/IGFIRS-1 knockout miceBeta-cell proliferationBeta-cell apoptosisIslet hypoplasiaIRS-2 expressionEndogenous isletsOvert diabetesKidney capsuleIslet responseIslet functionIslet defectKnockout miceMitotic rateCompensatory increaseIslet growthDysfunctional isletsGrowth retardationTransplantation approachesΒ-cellsAntiapoptotic effectIGF
2004
Dysregulation of insulin receptor substrate 2 in β cells and brain causes obesity and diabetes
Lin X, Taguchi A, Park S, Kushner J, Li F, Li Y, White M. Dysregulation of insulin receptor substrate 2 in β cells and brain causes obesity and diabetes. Journal Of Clinical Investigation 2004, 114: 908-916. PMID: 15467829, PMCID: PMC518668, DOI: 10.1172/jci22217.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBody WeightBrainDiabetes Mellitus, Type 2DietEatingGene DeletionGene Expression RegulationGlucoseHomeostasisHumansHypothalamusInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansMaleMiceMice, Inbred C57BLMice, KnockoutObesityPhosphoproteinsRandom AllocationSignal TransductionConceptsInsulin receptor substrate 2Beta cellsInsulin resistanceSufficient beta cell functionPancreas beta cellsBeta-cell failureBeta-cell functionFunctional beta cellsMonths of ageAdult beta cellsFat body massSubstrate 2Obese miceDiabetesΒ-cellsObesityPromotes RegenerationConditional knockoutCell functionMiceBrainBody massMolecular linkCell failureCells
2002
Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor
Xuan S, Kitamura T, Nakae J, Politi K, Kido Y, Fisher P, Morroni M, Cinti S, White M, Herrera P, Accili D, Efstratiadis A. Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. Journal Of Clinical Investigation 2002, 110: 1011-1019. PMID: 12370279, PMCID: PMC151144, DOI: 10.1172/jci15276.Peer-Reviewed Original ResearchConceptsType 1 IGF receptorBeta-cell massDefective insulin secretionInsulin secretionIGF receptorInsulin releaseInadequate compensatory increaseGlucose-dependent insulin releaseBeta-cell proliferationAge-dependent impairmentPancreatic β-cellsGlucose toleranceDecrease of glucoseBeta cellsType 2Compensatory increaseCell massΒ-cellsReceptor tyrosine kinasesSecretionCell proliferationAntiapoptotic roleReceptorsTyrosine kinaseConditional mutagenesis
1999
Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling
COUSIN S, HülGL S, MYERS M, WHITE M, REIFEL-MILLER A, RHODES C. Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochemical Journal 1999, 344: 649-658. DOI: 10.1042/bj3440649.Peer-Reviewed Original ResearchINS-1 cell proliferationSignal transduction pathwaysΒ-cell proliferationSignal transductionCell proliferationKinase 2Sevenless-1 proteinMitogenic signal transduction pathwaysJAK2/STAT5 pathwayΒ-cellsMitogen-activated protein kinaseRat growth hormoneJAK2/STAT5Rat β-cell linePancreatic β-cell proliferationΒ-cell lineMitogenic signalingS6 kinaseProtein kinaseProtein associationTranscription 5Pancreatic β-cellsReceptor substrateKinase activationDifferent mitogenicIrs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling
Withers D, Burks D, Towery H, Altamuro S, Flint C, White M. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nature Genetics 1999, 23: 32-40. PMID: 10471495, DOI: 10.1038/12631.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsApoptosisBlood GlucoseBody WeightFemaleGene Expression Regulation, DevelopmentalGlucose Tolerance TestInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsIslets of LangerhansLiverMaleMiceMice, KnockoutMuscle, SkeletalPancreasPhosphoproteinsReceptor, IGF Type 1Signal TransductionTime FactorsConceptsIGF-1 receptorΒ-cell developmentIGF-1Glucose homeostasisΒ-cellsPeripheral insulin resistancePeripheral target tissuesEffect of insulinPancreatic β-cellsPeripheral insulinInsulin resistanceInsulin receptor substratePost-natal growthGlucose metabolismNull allelesTarget tissuesInsulinMiceReceptor substrateIR-1Carbohydrate metabolismReceptorsSurvivalCell growthPleiotropic effects