1987
Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers
Bowe C, Kocsis J, Targ E, Waxman S. Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers. Annals Of Neurology 1987, 22: 264-268. PMID: 2821876, DOI: 10.1002/ana.410220212.Peer-Reviewed Original ResearchConceptsSensory fibersClinical trialsAction potentialsPotassium channel blockadeDorsal root axonsCompound action potentialDorsal spinal rootsSingle action potentialMammalian motorIntrathecal injectionMultiple sclerosisSensory dysfunctionVentral rootsSpinal rootsNeuromuscular disordersSpecific fiber typesElectrophysiological responsesSingle stimulusPhysiological effectsTrialsFiber typesResponseParesthesiaSclerosisDysfunction
1985
Myelin sheath remodelling in regenerated rat sciatic nerve
Hildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesAdult rat sciatic nerveRegenerated rat sciatic nerveNormal control nervesLight microscopic examinationAction potential waveformCrush lesionMonths survivalNerve segmentsControl nervesSame nerveIndividual nervesNerve fibersNerveShort sheathMyelin layersMyelin sheathPotassium channelsMicroscopic examinationAminopyridine-sensitivity of spinal cord white matter studied in vitro
Kocsis J. Aminopyridine-sensitivity of spinal cord white matter studied in vitro. Experimental Brain Research 1985, 57: 620-624. PMID: 2984039, DOI: 10.1007/bf00237849.Peer-Reviewed Original ResearchMeSH Keywords4-AminopyridineAction PotentialsAminopyridinesAnimalsIn Vitro TechniquesRatsRats, Inbred StrainsSpinal CordConceptsCentral nervous system extensionSpinal cord white matterAction potential dischargeDorsal column axonsSucrose gap chamberCompound action potentialPeripheral nervous systemCord white matterVentral root fibersAction potential characteristicsSensory fibersDorsal columnsDorsal rootsSpinal cordNervous systemWhite matterAction potentialsPotential dischargeRoot fibersPotassium channelsCourse of maturationOcclusion experimentsAxonsPronounced increaseCordLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturationEffects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum
Preston R, Waxman S, Kocsis J. Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum. Experimental Neurology 1983, 79: 808-820. PMID: 6825765, DOI: 10.1016/0014-4886(83)90044-4.Peer-Reviewed Original ResearchConceptsRat corpus callosumCallosal fibersCerebral axonsNerve fibersCorpus callosumMammalian peripheral nerve fibersNegative waveVoltage-dependent potassium currentsSecond negative waveNon-myelinated nerve fibresPeripheral nerve fibersField potentialsShort-latency wavesFirst negative waveCallosal stimulationPotassium blockersPotassium currentAction potentialsPeripheral fibersCallosumRecording electrodesMembrane repolarizationAxonsFunctional organizationComparable differences
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAminopyridinesAnimalsAxonsIon ChannelsMaleNerve RegenerationNeural ConductionPotassiumRatsConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent study
1980
Absence of potassium conductance in central myelinated axons
Kocsis J, Waxman S. Absence of potassium conductance in central myelinated axons. Nature 1980, 287: 348-349. PMID: 7421994, DOI: 10.1038/287348a0.Peer-Reviewed Original ResearchConceptsCentral myelinated axonsMyelinated axonsAction potentialsPotassium conductanceDorsal column axonsVoltage-clamp experimentsLate outward currentOutward currentsAxonsSodium ion permeabilityLate increaseDepolarization phasePotassium permeabilityAxonal membraneRepolarizationMyelinInitial increaseVoltage-dependent changesSodium inactivationDemyelinationPrevious studiesEffects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortex
Kocsis J, Malenka R, Waxman S. Effects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortex. Brain Research 1980, 195: 511-516. PMID: 6249447, DOI: 10.1016/0006-8993(80)90090-6.Peer-Reviewed Original Research