2000
Voltage-Gated Calcium Currents in Axotomized Adult Rat Cutaneous Afferent Neurons
Baccei M, Kocsis J. Voltage-Gated Calcium Currents in Axotomized Adult Rat Cutaneous Afferent Neurons. Journal Of Neurophysiology 2000, 83: 2227-2238. PMID: 10758131, DOI: 10.1152/jn.2000.83.4.2227.Peer-Reviewed Original ResearchConceptsVoltage-gated calcium currentsCutaneous afferent neuronsPA/pFNerve injuryCutaneous afferentsType 1 cellsBarium currentsAfferent neuronsHVA currentsCalcium currentLow threshold T-type currentWhole-cell patch-clamp techniqueDorsal root ganglion neuronsCell patch-clamp techniqueFluoro-Gold labelingOmega-agatoxin TKSciatic nerve injuryOmega-conotoxin GVIAPercentage of neuronsType 2 phenotypeT-type currentType 2 neuronsCalcium current propertiesType 1 neuronsControl cells
1999
Reduction in Potassium Currents in Identified Cutaneous Afferent Dorsal Root Ganglion Neurons After Axotomy
Everill B, Kocsis J. Reduction in Potassium Currents in Identified Cutaneous Afferent Dorsal Root Ganglion Neurons After Axotomy. Journal Of Neurophysiology 1999, 82: 700-708. PMID: 10444667, DOI: 10.1152/jn.1999.82.2.700.Peer-Reviewed Original ResearchConceptsDorsal root ganglion neuronsCutaneous afferent neuronsAfferent neuronsGanglion neuronsPotassium currentWhole-cell patch-clamp recordingsCell patch-clamp recordingsPrimary afferent neuronsEffects of axotomyPatch-clamp recordingsControl cellsAppropriate ion replacementAcute ligationNerve ligationDRG neuronsExcitability changesChannel blockersNeuronal excitabilityPharmacological componentsAxotomyNeuronsLigationBasis of sensitivityCellsBlockers
1998
The delayed depolarization in rat cutaneous afferent axons is reduced following nerve transection and ligation, but not crush: Implications for injury‐induced axonal NA + channel reorganization
Sakai J, Honmou O, Kocsis J, Hashi K. The delayed depolarization in rat cutaneous afferent axons is reduced following nerve transection and ligation, but not crush: Implications for injury‐induced axonal NA + channel reorganization. Muscle & Nerve 1998, 21: 1040-1047. PMID: 9655122, DOI: 10.1002/(sici)1097-4598(199808)21:8<1040::aid-mus8>3.0.co;2-8.Peer-Reviewed Original ResearchConceptsCutaneous afferent axonsNerve injurySural nerveNerve transectionAfferent axonsAction potentialsCell bodiesCutaneous afferent neuronsPeripheral nerve injuryAfferent cell bodiesSucrose gap chamberRat sural nerveTarget disconnectionAfferent neuronsPeripheral targetsAxonal NaNerveRefractory periodAxonsTransectionCompound actionDepolarizationSimilar changesInjuryTarget connectionsMorphologically Identified Cutaneous Afferent DRG Neurons Express Three Different Potassium Currents in Varying Proportions
Everill B, Rizzo M, Kocsis J. Morphologically Identified Cutaneous Afferent DRG Neurons Express Three Different Potassium Currents in Varying Proportions. Journal Of Neurophysiology 1998, 79: 1814-1824. PMID: 9535950, PMCID: PMC2605378, DOI: 10.1152/jn.1998.79.4.1814.Peer-Reviewed Original ResearchConceptsDRG neuronsMedium-sized DRG neuronsDorsal root ganglion neuronsCutaneous afferent neuronsDifferent potassium currentsWhole-cell patch-clamp configurationOutward current componentPatch-clamp configurationAfferent neuronsFluoro-GoldGanglion neuronsRetrograde labelingConditioning prepulseEntire populationChannel blockersPotassium currentMyelinated axonsSustained currentNeuronsTest pulseDendrotoxinBasis of sensitivityIKCellsBlockers
1997
Differential Effects of NGF and BDNF on Axotomy-Induced Changes in GABAA-Receptor-Mediated Conductance and Sodium Currents in Cutaneous Afferent Neurons
Oyelese A, Rizzo M, Waxman S, Kocsis J. Differential Effects of NGF and BDNF on Axotomy-Induced Changes in GABAA-Receptor-Mediated Conductance and Sodium Currents in Cutaneous Afferent Neurons. Journal Of Neurophysiology 1997, 78: 31-42. PMID: 9242258, PMCID: PMC2605357, DOI: 10.1152/jn.1997.78.1.31.Peer-Reviewed Original ResearchConceptsBrain-derived neurotrophic factorCutaneous afferent neuronsNerve growth factorReceptor-mediated conductanceProportion of neuronsAfferent neuronsAction potential waveformSodium currentNeurotrophic factorL4/L5 DRG neuronsAction potentialsVoltage-dependent sodium currentsWhole-cell patch-clamp techniqueDorsal root ganglion neuronsCell patch-clamp techniqueAxotomy-induced increaseFluoro-Gold injectionsL5 DRG neuronsSpecific neurotrophic factorsSciatic nerve stumpsTTX-sensitive currentsInjury-induced changesResistant sodium currentsGamma-aminobutyric acidPatch-clamp technique
1996
GABAA-receptor-mediated conductance and action potential waveform in cutaneous and muscle afferent neurons of the adult rat: differential expression and response to nerve injury
Oyelese A, Kocsis J. GABAA-receptor-mediated conductance and action potential waveform in cutaneous and muscle afferent neurons of the adult rat: differential expression and response to nerve injury. Journal Of Neurophysiology 1996, 76: 2383-2392. PMID: 8899611, PMCID: PMC2605353, DOI: 10.1152/jn.1996.76.4.2383.Peer-Reviewed Original ResearchConceptsGABAA receptor-mediated conductanceMuscle afferent neuronsCutaneous afferent neuronsAction potential waveformAfferent neuronsDorsal root gangliaCrush injuryAction potentialsL5 dorsal root gangliaWhole-cell patch-clamp recordingsCell patch-clamp recordingsInjury-induced plasticitySciatic nerve ligationPotential waveformDistal nerve stumpPatch-clamp recordingsGamma-aminobutyric acidPeak GABANerve ligationMuscle afferentsNerve injuryDRG neuronsInjured neuronsNerve stumpRoot ganglia