2024
Risk factors underlying racial and ethnic disparities in tuberculosis diagnosis and treatment outcomes, 2011–19: a multiple mediation analysis of national surveillance data
Regan M, Barham T, Li Y, Swartwood N, Beeler Asay G, Cohen T, Horsburgh C, Khan A, Marks S, Myles R, Salomon J, Self J, Winston C, Menzies N. Risk factors underlying racial and ethnic disparities in tuberculosis diagnosis and treatment outcomes, 2011–19: a multiple mediation analysis of national surveillance data. The Lancet Public Health 2024, 9: e564-e572. PMID: 39095133, PMCID: PMC11587887, DOI: 10.1016/s2468-2667(24)00151-8.Peer-Reviewed Original ResearchConceptsUS-born individualsNon-US-born individualsHispanic individualsTract-level povertyTract-level measuresEthnic disparitiesCensus tract levelCensus tract-level povertyEconomic segregationEvidence of disparitiesAnalysis of national surveillance dataBlack individualsTuberculosis outcomesNeighborhood-level social vulnerabilityTract levelUS-bornSocial vulnerabilityUS National Tuberculosis Surveillance SystemNational Tuberculosis Surveillance SystemHigh riskCensusNational surveillance dataTuberculosis Surveillance SystemCase managementReduce disparitiesDisparities in Tuberculosis Incidence by Race and Ethnicity Among the U.S.-Born Population in the United States, 2011 to 2021 : An Analysis of National Disease Registry Data.
Li Y, Regan M, Swartwood N, Barham T, Beeler Asay G, Cohen T, Hill A, Horsburgh C, Khan A, Marks S, Myles R, Salomon J, Self J, Menzies N. Disparities in Tuberculosis Incidence by Race and Ethnicity Among the U.S.-Born Population in the United States, 2011 to 2021 : An Analysis of National Disease Registry Data. Annals Of Internal Medicine 2024, 177: 418-427. PMID: 38560914, DOI: 10.7326/m23-2975.Peer-Reviewed Original ResearchMeSH KeywordsEthnicityHumansIncidenceMinority GroupsPopulation SurveillanceRoutinely Collected Health DataTuberculosisUnited StatesConceptsIncidence rate ratiosNon-Hispanic white personsTB incidence rateRate ratiosIncidence rateTB incidenceSocial determinants of healthRelated disparitiesWhite personsHealth equity goalsU.S.-born populationAbsolute disparityDeterminants of healthTB registry dataRacial/ethnic minority populationsCenters for Disease Control and PreventionDisease Control and PreventionIncidence rate differenceTB casesYoung personControl and PreventionState of residenceAI/AN personsSocial determinantsRacial/ethnic disparities
2021
Trends, Mechanisms, and Racial/Ethnic Differences of Tuberculosis Incidence in the US-Born Population Aged 50 Years or Older in the United States
Kim S, Cohen T, Horsburgh CR, Miller JW, Hill AN, Marks SM, Li R, Kammerer JS, Salomon JA, Menzies NA. Trends, Mechanisms, and Racial/Ethnic Differences of Tuberculosis Incidence in the US-Born Population Aged 50 Years or Older in the United States. Clinical Infectious Diseases 2021, 74: 1594-1603. PMID: 34323959, PMCID: PMC8799750, DOI: 10.1093/cid/ciab668.Peer-Reviewed Original ResearchMeSH KeywordsChildCohort StudiesEthnicityHumansIncidencePopulation SurveillanceTuberculosisUnited StatesConceptsAnnual percentage declineIncidence rateRemote infectionBirth cohortOlder individualsPercentage declineUS National TB Surveillance SystemAverage annual percentage declineNational TB Surveillance SystemRace/ethnicity strataTB incidence rateTB surveillance systemLow-incidence settingsEthnic differencesEarlier birth cohortsRecent birth cohortsRace/ethnicityOverall cohortTB casesTB incidenceIncidence settingsRecent infectionTB ratesTuberculosis incidenceRisk factors
2020
High-resolution estimates of tuberculosis incidence among non-U.S.-born persons residing in the United States, 2000–2016
Hill AN, Cohen T, Salomon JA, Menzies NA. High-resolution estimates of tuberculosis incidence among non-U.S.-born persons residing in the United States, 2000–2016. Epidemics 2020, 33: 100419. PMID: 33242759, PMCID: PMC7808561, DOI: 10.1016/j.epidem.2020.100419.Peer-Reviewed Original ResearchConceptsIncidence risk ratioTuberculosis incidence rateIncidence rateTuberculosis riskTuberculosis casesNational Tuberculosis Surveillance SystemTuberculosis prevention effortsNew tuberculosis casesLow incidence rateTuberculosis Surveillance SystemBirth countryTuberculosis incidenceRisk ratioTuberculosis trendsHigh-income countriesYounger agePrevention effortsEffective targetingCohortEntry yearCommunity surveySurveillance systemRegression modelsAgeUnited StatesTracking and predicting U.S. influenza activity with a real-time surveillance network
Leuba SI, Yaesoubi R, Antillon M, Cohen T, Zimmer C. Tracking and predicting U.S. influenza activity with a real-time surveillance network. PLOS Computational Biology 2020, 16: e1008180. PMID: 33137088, PMCID: PMC7707518, DOI: 10.1371/journal.pcbi.1008180.Peer-Reviewed Original ResearchMeSH KeywordsCenters for Disease Control and Prevention, U.S.Computer SystemsDatasets as TopicHumansInfluenza, HumanPopulation SurveillanceUnited StatesConceptsInfluenza test resultsInfluenza activityU.S. influenza activityPhysician visitsInfluenza trendsInfluenza-like illness activityNational surveillance networkSurveillance networkInfluenza seasonCurrent burdenU.S. CentersIllness activityDisease controlUnited StatesLinear logistic modelVisitsLogistic modelValid estimatesProportion
2018
The impact of migration on tuberculosis in the United States
Menzies NA, Hill AN, Cohen T, Salomon JA. The impact of migration on tuberculosis in the United States. The International Journal Of Tuberculosis And Lung Disease 2018, 22: 1392-1403. PMID: 30606311, PMCID: PMC6353558, DOI: 10.5588/ijtld.17.0185.Peer-Reviewed Original ResearchMeSH KeywordsEmigrants and ImmigrantsEmigration and ImmigrationHumansIncidenceLatent TuberculosisMass ScreeningPopulation SurveillanceTuberculosisUnited StatesConceptsTB casesTB burdenHigher tuberculosis ratesNew TB casesLow-incidence settingsEntry yearActive TBTB epidemiologyTB riskIncidence estimatesTuberculosis ratesLifetime casesUnited StatesRiskPopulation residentGreater exposureBurdenNative-born populationPopulationCountry of originTBYearsTuberculosisCasesInfectionUse of daily Internet search query data improves real-time projections of influenza epidemics
Zimmer C, Leuba SI, Yaesoubi R, Cohen T. Use of daily Internet search query data improves real-time projections of influenza epidemics. Journal Of The Royal Society Interface 2018, 15: 20180220. PMID: 30305417, PMCID: PMC6228485, DOI: 10.1098/rsif.2018.0220.Peer-Reviewed Original Research
2015
Evaluating the potential impact of enhancing HIV treatment and tuberculosis control programmes on the burden of tuberculosis
Chindelevitch L, Menzies NA, Pretorius C, Stover J, Salomon JA, Cohen T. Evaluating the potential impact of enhancing HIV treatment and tuberculosis control programmes on the burden of tuberculosis. Journal Of The Royal Society Interface 2015, 12: 20150146. PMID: 25878131, PMCID: PMC4424692, DOI: 10.1098/rsif.2015.0146.Peer-Reviewed Original ResearchConceptsAntiretroviral therapyTB incidenceTB burdenBurden of tuberculosisTuberculosis Control ProgrammePotential epidemiological impactART eligibilityMortality benefitTB programsHIV treatmentTB prevalenceTuberculosis incidenceEpidemiological impactART useProgram improvementHIVTreatment effectivenessIncidenceMortalityGreater reductionBurdenTBSaharan AfricaControl programsEligibilityThe prospective evaluation of the TB strain typing service in England: a mixed methods study
Mears J, Vynnycky E, Lord J, Borgdorff MW, Cohen T, Crisp D, Innes JA, Lilley M, Maguire H, McHugh TD, Woltmann G, Abubakar I, Sonnenberg P. The prospective evaluation of the TB strain typing service in England: a mixed methods study. Thorax 2015, 71: thoraxjnl-2014-206480. PMID: 25882538, DOI: 10.1136/thoraxjnl-2014-206480.Peer-Reviewed Original ResearchConceptsDiagnostic delayTB incidenceTB notification ratesProportion of infectionsMycobacterium tuberculosis diagnosisFalse-positive diagnosesCost-effectiveness analysisMixed-methods evaluationStrain typingTB programsProspective evaluationNotification ratesInfection increasesTuberculosis diagnosisPositive diagnosisPublic health dataComplex interventionsIncidenceMixed-methods studyRoutine laboratoryDiagnosisHealth dataCluster investigationsTypingMethods study
2014
On the spread and control of MDR-TB epidemics: An examination of trends in anti-tuberculosis drug resistance surveillance data
Cohen T, Jenkins HE, Lu C, McLaughlin M, Floyd K, Zignol M. On the spread and control of MDR-TB epidemics: An examination of trends in anti-tuberculosis drug resistance surveillance data. Drug Resistance Updates 2014, 17: 105-123. PMID: 25458783, PMCID: PMC4358299, DOI: 10.1016/j.drup.2014.10.001.Peer-Reviewed Original ResearchMeSH KeywordsAntitubercular AgentsHumansPopulation SurveillanceTuberculosis, Multidrug-ResistantWorld Health OrganizationConceptsMDR-TBTB casesResistant tuberculosisAbsolute burdenSurveillance dataMDR-TB epidemicDrug-resistant TBMultidrug-resistant tuberculosisDrug-resistant tuberculosisNotified TB casesResistance surveillance dataSufficient surveillance dataWorld Health OrganizationBurden settingsTuberculosis controlUnadjusted analysesSignificant linear trendSurveillance indicatorsRobust surveillance systemHealth OrganizationTuberculosisBurdenSurveillance systemSettingLinear trendProspective evaluation of a complex public health intervention: lessons from an initial and follow-up cross-sectional survey of the tuberculosis strain typing service in England
Mears J, Abubakar I, Crisp D, Maguire H, Innes JA, Lilley M, Lord J, Cohen T, Borgdorff MW, Vynnycky E, McHugh TD, Sonnenberg P. Prospective evaluation of a complex public health intervention: lessons from an initial and follow-up cross-sectional survey of the tuberculosis strain typing service in England. BMC Public Health 2014, 14: 1023. PMID: 25273511, PMCID: PMC4194411, DOI: 10.1186/1471-2458-14-1023.Peer-Reviewed Original ResearchMeSH KeywordsAttitude of Health PersonnelBacterial Typing TechniquesClinical CompetenceCost-Benefit AnalysisCross-Sectional StudiesEnglandFemaleFollow-Up StudiesHealth ServicesHumansMaleMolecular EpidemiologyMycobacteriumPopulation SurveillanceProgram EvaluationProspective StudiesPublic HealthSurveys and QuestionnairesTuberculosisConceptsPublic health interventionsComplex public health interventionsCross-sectional surveyHealth interventionsNational public health interventionsStrain typingPublic health staffRepeated cross-sectional surveySignificant increaseMIRU-VNTR typingProportion of respondentsTB patientsSelf-rated knowledgeTB controlProspective evaluationMixed-method evaluationHealth staffProspective identificationMajority of respondentsService users' perceptionsMethodsAn onlineInterventionTypingFuture evaluationProfessional groupsGeographical heterogeneity of multidrug-resistant tuberculosis in Georgia, January 2009 to June 2011.
Jenkins HE, Gegia M, Furin J, Kalandadze I, Nanava U, Chakhaia T, Cohen T. Geographical heterogeneity of multidrug-resistant tuberculosis in Georgia, January 2009 to June 2011. Eurosurveillance 2014, 19 PMID: 24679722, PMCID: PMC4090679, DOI: 10.2807/1560-7917.es2014.19.11.20743.Peer-Reviewed Original ResearchConceptsMultidrug-resistant TBMDR-TB risk factorsTB casesRisk factorsMDR-TB incidenceMDR-TB riskMDR-TB transmissionMDR-TB casesMultidrug-resistant tuberculosisTreatment-naïve individualsMDR-TB burdenTuberculosis casesHigh riskTargeted interventionsSurveillance dataGeographical heterogeneityRegression modellingInterventionRiskRural areasCasesTuberculosisIncidencePercentage
2012
Linking Surveillance with Action against Drug-Resistant Tuberculosis
Cohen T, Manjourides J, Hedt-Gauthier B. Linking Surveillance with Action against Drug-Resistant Tuberculosis. American Journal Of Respiratory And Critical Care Medicine 2012, 186: 399-401. PMID: 22592806, PMCID: PMC3443807, DOI: 10.1164/rccm.201203-0394pp.Peer-Reviewed Original ResearchConceptsMultidrug-resistant tuberculosisForms of TBDrug-resistant TBManagement of patientsDrug-resistant tuberculosisSecond-line drugsEffective public health responseDrug susceptibility testingPublic health responseQuality-assured treatmentMDRTB treatmentIncident casesHigh burdenProgrammatic dataHealth responseDrug resistanceSusceptibility testingImproved surveillance methodsPopulation subgroupsSurveillance methodsSurveillance activitiesTuberculosisClear roleTreatmentRecent global estimatesControversies and Unresolved Issues in Tuberculosis Prevention and Control: A Low-Burden-Country Perspective
Abubakar I, Stagg HR, Cohen T, Mangtani P, Rodrigues LC, Pimpin L, Watson JM, Squire SB, Zumla A. Controversies and Unresolved Issues in Tuberculosis Prevention and Control: A Low-Burden-Country Perspective. The Journal Of Infectious Diseases 2012, 205: s293-s300. PMID: 22448025, DOI: 10.1093/infdis/jir886.Peer-Reviewed Original ResearchConceptsHigh-risk groupTuberculosis preventionHigh-income countriesScreening of migrantsContacts of casesLow-burden countriesMultidrug-resistant tuberculosisRate of tuberculosisBurden of diseaseDuration of protectionMost high-income countriesConcentration of casesPreventive therapyBCG vaccineCurrent evidenceGeneral populationLow burdenSurveillance dataTuberculosisReach groupsHomeless personsPace of reductionPreventionBurdenGroup
2011
Drug Resistance Surveillance in Resource-Poor Settings: Current Methods and Considerations for TB, HIV, and Malaria
Hedt BL, Laufer MK, Cohen T. Drug Resistance Surveillance in Resource-Poor Settings: Current Methods and Considerations for TB, HIV, and Malaria. American Journal Of Tropical Medicine And Hygiene 2011, 84: 192-199. PMID: 21292884, PMCID: PMC3029167, DOI: 10.4269/ajtmh.2011.10-0363.Peer-Reviewed Original Research
2009
Use of Cumulative Incidence of Novel Influenza A/H1N1 in Foreign Travelers to Estimate Lower Bounds on Cumulative Incidence in Mexico
Lipsitch M, Lajous M, O'Hagan JJ, Cohen T, Miller JC, Goldstein E, Danon L, Wallinga J, Riley S, Dowell SF, Reed C, McCarron M. Use of Cumulative Incidence of Novel Influenza A/H1N1 in Foreign Travelers to Estimate Lower Bounds on Cumulative Incidence in Mexico. PLOS ONE 2009, 4: e6895. PMID: 19742302, PMCID: PMC2731883, DOI: 10.1371/journal.pone.0006895.Peer-Reviewed Original ResearchConceptsInfluenza A/H1N1Influenza A/Cumulative incidenceNovel influenza A/Severity of illnessSeverity of diseaseSevere diseaseTotal numberSevere symptomsNumber of casesDisease severityCurrent epidemicInfectious diseasesCanadian travellersIncidenceDiseaseAffected individualsSeverityH1N1Mexican residentsObserved groupEpidemicNovel pathogensDisease spreadResidents
2008
Personal digital assistants to collect tuberculosis bacteriology data in Peru reduce delays, errors, and workload, and are acceptable to users: cluster randomized controlled trial
Blaya JA, Cohen T, Rodríguez P, Kim J, Fraser HS. Personal digital assistants to collect tuberculosis bacteriology data in Peru reduce delays, errors, and workload, and are acceptable to users: cluster randomized controlled trial. International Journal Of Infectious Diseases 2008, 13: 410-418. PMID: 19097925, PMCID: PMC2673336, DOI: 10.1016/j.ijid.2008.09.015.Peer-Reviewed Original ResearchAre Survey-Based Estimates of the Burden of Drug Resistant TB Too Low? Insight from a Simulation Study
Cohen T, Colijn C, Finklea B, Wright A, Zignol M, Pym A, Murray M. Are Survey-Based Estimates of the Burden of Drug Resistant TB Too Low? Insight from a Simulation Study. PLOS ONE 2008, 3: e2363. PMID: 18523659, PMCID: PMC2408555, DOI: 10.1371/journal.pone.0002363.Peer-Reviewed Original ResearchMeSH KeywordsData CollectionDisease OutbreaksHumansIncidencePopulation SurveillancePrevalenceTuberculosis, Multidrug-ResistantConceptsResistant tuberculosisIncident casesTotal burdenDrug-resistant TBDrug-resistant tuberculosisSecond-line antibioticsDrug treatment regimensDrug sensitivity testingDrug-resistant strainsBurden of resistanceEmergence of tuberculosisResistant TBTreatment regimensPrevalent casesWorldwide burdenIntroduction of interventionsRoutine surveillanceSurveillance strategiesDrug resistanceTuberculosisLaboratory capacityMycobacterium tuberculosisSensitivity testingTuberculosis modelBurdenChallenges in Estimating the Total Burden of Drug-resistant Tuberculosis
Cohen T, Colijn C, Wright A, Zignol M, Pym A, Murray M. Challenges in Estimating the Total Burden of Drug-resistant Tuberculosis. American Journal Of Respiratory And Critical Care Medicine 2008, 177: 1302-1306. PMID: 18369201, PMCID: PMC2720088, DOI: 10.1164/rccm.200801-175pp.Peer-Reviewed Original ResearchConceptsDrug-resistant tuberculosisDrug resistance surveillanceHIV/TB coinfectionAnti-Tuberculosis Drug Resistance SurveillanceResistance surveillanceSentinel site surveillanceBurden of tuberculosisMultidrug-resistant diseaseMultidrug-resistant tuberculosisTB control programsTB coinfectionTB casesHigh burdenMethodologic obstaclesSurveillance studyNew casesTotal burdenTuberculosisLaboratory capacityBurdenSurveillanceControl programsDiagnostic technologiesRecent recognitionTrue extent