2024
3-Hydroxykynurenine targets kainate receptors to promote defense against infection
Parada-Kusz M, Clatworthy A, Goering E, Blackwood S, Shigeta J, Mashin E, Salm E, Choi C, Combs S, Lee J, Rodriguez-Osorio C, Clish C, Tomita S, Hung D. 3-Hydroxykynurenine targets kainate receptors to promote defense against infection. Nature Chemical Biology 2024, 20: 1586-1596. PMID: 38898166, DOI: 10.1038/s41589-024-01635-z.Peer-Reviewed Original ResearchKainate-sensitive glutamate receptorsHost tryptophan metabolismHost survivalBacterial infectionsPromote host survivalGlutamate receptorsLethal bacterial infectionHost-pathogenIn vivo chemical screeningTryptophan metabolismPromote defenseBacterial expansionOutcome of infectionChemical screeningZebrafish embryosAntibacterial activityKainate receptorsPathogen eradicationPathogensHostModulate immunityNervous systemInfectionMetabolismReceptors
2023
Glutamatergic Pathways and Receptors
Tomita S. Glutamatergic Pathways and Receptors. 2023, 197-200. DOI: 10.1007/978-3-031-15070-8_30.Peer-Reviewed Original ResearchGlutamate receptorsSynaptic transmissionSynaptic plasticityReceptor activityGlutamate receptor activityGlutamate-gated cation channelsMajor excitatory neurotransmitterGi/oG protein-coupled receptorsProtein-coupled receptorsGlutamate releaseExcitatory neurotransmitterNMDA receptorsGlutamatergic pathwaysKainate receptorsAMPA receptorsTherapeutic strategiesDistinct synapsesPostsynaptic signalingNeurological disordersSynaptic strengthGq signalingNeurodegenerative diseasesReceptorsCation channels
2018
Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition
Chiu CQ, Martenson JS, Yamazaki M, Natsume R, Sakimura K, Tomita S, Tavalin SJ, Higley MJ. Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition. Neuron 2018, 97: 368-377.e3. PMID: 29346754, PMCID: PMC5777295, DOI: 10.1016/j.neuron.2017.12.032.Peer-Reviewed Original ResearchConceptsDendritic inhibitionInput-specific long-term potentiationNMDA-type glutamate receptorsGABAergic inhibitory synapsesSomatostatin-expressing interneuronsGABA-A receptorsNormal brain functionLong-term potentiationForms of plasticityHomeostatic cellular mechanismsGABAergic inhibitionSynaptic excitationPerisomatic inhibitionPostsynaptic spikingInhibitory synapsesLong-term plasticityGlutamate receptorsInhibitory inputsSynaptic transmissionDependent potentiationCortical circuitsGenetic deletionBrain functionNeuronal dendritesCellular mechanisms
2016
Glutamatergic Pathways and Receptors
Tomita S. Glutamatergic Pathways and Receptors. 2016, 231-236. DOI: 10.1007/978-3-319-24551-5_29.Peer-Reviewed Original ResearchGlutamate receptorsSynaptic transmissionSynaptic plasticityReceptor activityGlutamate receptor activityGlutamate-gated cation channelsMajor excitatory neurotransmitterGi/oG protein-coupled receptorsProtein-coupled receptorsGlutamate releaseExcitatory neurotransmitterNMDA receptorsGlutamatergic pathwaysKainate receptorsAMPA receptorsTherapeutic strategiesDistinct synapsesPostsynaptic signalingNeurological disordersSynaptic strengthGq signalingNeurodegenerative diseasesReceptorsCation channels
2013
Cornichons Control ER Export of AMPA Receptors to Regulate Synaptic Excitability
Brockie PJ, Jensen M, Mellem JE, Jensen E, Yamasaki T, Wang R, Maxfield D, Thacker C, Hoerndli F, Dunn PJ, Tomita S, Madsen DM, Maricq AV. Cornichons Control ER Export of AMPA Receptors to Regulate Synaptic Excitability. Neuron 2013, 80: 129-142. PMID: 24094107, PMCID: PMC3795439, DOI: 10.1016/j.neuron.2013.07.028.Peer-Reviewed Original ResearchConceptsGlutamatergic synaptic transmissionGlutamate-gated currentsNervous system functionIonotropic glutamate receptorsC. elegansER exportSynaptic excitabilityCargo adaptorsTransgenic wormsGenetic approachesOpposite phenotypeCornichon ProteinsGlutamate receptorsSynaptic transmissionAgonist AMPAHeterologous cellsAMPA receptorsCentral synapsesAMPAR numberSynaptic communicationReconstitution studiesHomeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors
Yan D, Yamasaki M, Straub C, Watanabe M, Tomita S. Homeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors. Neuron 2013, 78: 687-699. PMID: 23719165, PMCID: PMC3668311, DOI: 10.1016/j.neuron.2013.02.031.Peer-Reviewed Original ResearchConceptsKainate receptor activityGlutamate receptorsReceptor activitySynaptic transmissionNeuronal activityHigh-affinity kainate receptor subunitKainate receptor-mediated currentsDistinct glutamate receptorsReceptor-mediated currentsAMPA receptor activitySynaptic AMPA receptorsPostsynaptic glutamate receptorsKainate receptor subunitsAbundant excitatory neurotransmitterCerebellar granule cellsReceptor channel propertiesExcitatory neurotransmitterNMDA receptorsAMPA receptorsGranule cellsReceptor subunitsReceptorsSpike generationHomeostatic controlGluK5 subunits
2011
Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1
Straub C, Hunt DL, Yamasaki M, Kim KS, Watanabe M, Castillo PE, Tomita S. Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nature Neuroscience 2011, 14: 866-873. PMID: 21623363, PMCID: PMC3125417, DOI: 10.1038/nn.2837.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBiophysical PhenomenaBiophysicsCA1 Region, HippocampalCell Line, TransformedCerebellumDisks Large Homolog 4 ProteinDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression RegulationGreen Fluorescent ProteinsGuanylate KinasesHumansImmunoprecipitationIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsKainic AcidLDL-Receptor Related ProteinsLipoproteins, LDLMembrane PotentialsMembrane ProteinsMiceMice, KnockoutNeuronsPatch-Clamp TechniquesPresynaptic TerminalsProtein BindingProtein SubunitsReceptors, Kainic AcidReceptors, N-Methyl-D-AspartateSynaptophysinTransfectionTritium
2010
TARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers
Sumioka A, Yan D, Tomita S. TARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers. Neuron 2010, 66: 755-767. PMID: 20547132, PMCID: PMC2887694, DOI: 10.1016/j.neuron.2010.04.035.Peer-Reviewed Original ResearchConceptsAMPA receptor activityTransmembrane AMPA receptor regulatory proteinsReceptor activityGlutamate receptorsSynaptic transmissionAMPA receptorsAMPA receptor-mediated synaptic transmissionPredominant excitatory neurotransmitter receptorsReceptor-mediated synaptic transmissionAMPA-type glutamate receptorsSynaptic AMPA receptorsFast synaptic transmissionIonotropic glutamate receptorsExcitatory neurotransmitter receptorsReceptor regulatory proteinsNeuronal activityNeurotransmitter receptorsPSD-95Synaptic strengthNeural circuitsReceptorsPhosphorylation-dependent mannerStargazinSynapsesTarp phosphorylation
2009
A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors
Zhang W, St-Gelais F, Grabner CP, Trinidad JC, Sumioka A, Morimoto-Tomita M, Kim KS, Straub C, Burlingame AL, Howe JR, Tomita S. A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors. Neuron 2009, 61: 385-396. PMID: 19217376, PMCID: PMC2803770, DOI: 10.1016/j.neuron.2008.12.014.Peer-Reviewed Original ResearchConceptsKainate-type glutamate receptorsGlutamate receptorsIonotropic glutamate receptorsKainate receptorsSynaptic transmissionSurface expressionNative kainate receptorsFast synaptic transmissionKainate receptor subunitsBrain-specific proteinsExcitatory transmissionNMDA receptorsAMPA receptorsReceptor subunitsReceptorsProtein levelsNETO2Auxiliary subunitsTARP auxiliary subunitsBrainVertebrate brainKainate receptor GluR6Proteomic screenMajor roleMEPSCs