2000
Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors
Fjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman S, Black J. Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport 2000, 11: 199-202. PMID: 10683857, DOI: 10.1097/00001756-200001170-00039.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsCorneaFemaleGanglia, SpinalImage Processing, Computer-AssistedImmunohistochemistryMolecular Sequence DataMyelin SheathNAV1.9 Voltage-Gated Sodium ChannelNerve FibersNeurons, AfferentNeuropeptidesNociceptorsPresynaptic TerminalsRanvier's NodesRatsRats, Sprague-DawleySciatic NerveSodium ChannelsTetrodotoxinConceptsSciatic nerveSmall diameter primary sensory neuronsSodium currentTetrodotoxin-resistant sodium channelsTetrodotoxin-resistant sodium currentDorsal root ganglion neuronsSodium channelsPrimary sensory neuronsAxonal sodium currentsNodes of RanvierNociceptive transmissionChannel immunoreactivityGanglion neuronsUnmyelinated fibersAxon terminalsSensory neuronsNerveImmunoreactivityAxonsNeuronsSpecific peptidesNociceptorsIB4CorneaAntibodies
1992
Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve
Waxman S, Black J, Stys P, Ransom B. Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research 1992, 574: 105-119. PMID: 1638387, DOI: 10.1016/0006-8993(92)90806-k.Peer-Reviewed Original ResearchConceptsOptic nerveRat optic nerveMin of anoxiaPost-anoxic recoveryAnoxic injuryAstrocyte processesMyelin sheathLoss of microtubulesCell-mediated damageCNS white matterInflux of calciumLarge-diameter axonsPrevious electrophysiological studiesAction potential conductionWhite matter tractsNodes of RanvierAnoxic insultUltrastructure of axonsGlial cellsVesicular degenerationConduction blockEarly recoveryElectrophysiological studiesNerveSignificant injury
1990
Ion channel organization of the myelinated fiber
Black J, Kocsis J, Waxman S. Ion channel organization of the myelinated fiber. Trends In Neurosciences 1990, 13: 48-54. PMID: 1690930, DOI: 10.1016/0166-2236(90)90068-l.Peer-Reviewed Original ResearchImmuno-Localization of Sodium Channels in Axon Membrane and Astrocytes and Schwann Cells in vivo and in vitro
Black J, Friedman B, Cornell-Bell A, Angelides K, Ritchie J, Waxman S. Immuno-Localization of Sodium Channels in Axon Membrane and Astrocytes and Schwann Cells in vivo and in vitro. NATO ASI Series 1990, 81-97. DOI: 10.1007/978-3-642-83968-9_6.Peer-Reviewed Original ResearchSodium channelsGlial cellsSchwann cellsSodium channel immunoreactivityProcesses of astrocytesMammalian CNS tissueBrain sodium channelsVoltage-sensitive sodium channelsNodes of RanvierChannel immunoreactivityRat brain sodium channelsCNS tissueIntense immunostainingAstrocytesImmuno-localizationCellsAxon membraneVivoMajor roleImmunoreactivityImmunostaining
1986
Remodelling of internodes in regenerated rat sciatic nerve: Electron microscopic observations
Hildebrand C, Mustafa G, Waxman S. Remodelling of internodes in regenerated rat sciatic nerve: Electron microscopic observations. Brain Cell Biology 1986, 15: 681-692. PMID: 3819776, DOI: 10.1007/bf01625187.Peer-Reviewed Original ResearchConceptsRegenerated rat sciatic nerveRat sciatic nerveSciatic nerveSchwann cellsMyelin sheathRegenerated myelin sheathsRegenerated nerve segmentsSchwann cell networkLeft sciatic nerveSchwann cell cytoplasmMyelin sheath breakdownNodes of RanvierCrush lesionNerve segmentsSurvival periodUpper thighAdult ratsSurvival timeNerveInternodal shorteningImportant physiological implicationsMonthsLipid dropletsLamellated bodiesExtensive remodellingMolecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve
Black J, Waxman S. Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve. Developmental Biology 1986, 115: 301-312. PMID: 2423398, DOI: 10.1016/0012-1606(86)90251-4.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveMyelinated fibersLarge caliber fibersAxonal diameterNeonatal rat optic nerveP-face IMP densityControl optic nervesDays of ageNodes of RanvierUnensheathed axonsGlial ensheathmentSystemic injectionNerveAxonsGliogenesisIMP densityAxolemmaE-face particlesCell associationIntramembranous particlesRatsOligodendrocytesMyelinEnsheathment
1985
Perinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord
Sims T, Waxman S, Black J, Gilmore S. Perinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord. Brain Research 1985, 337: 321-331. PMID: 4027576, DOI: 10.1016/0006-8993(85)90069-1.Peer-Reviewed Original ResearchConceptsPerinodal astrocytic processesLumbar spinal cordSpinal cordGlial cellsAstrocytic processesNodes of RanvierThird postnatal dayRat spinal cordSpinal cord axonsIrradiated spinal cordStages of myelinationAstrocyte involvementVentral funiculusNeuronal elementsPostnatal dayOligodendrocyte populationCentral myelinCordAstrocytesProfound reductionMyelin sheathAxonsRatsNodal axolemmaPresumptive role
1984
Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations
Hildebrand C, Waxman S. Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations. The Journal Of Comparative Neurology 1984, 224: 25-37. PMID: 6715578, DOI: 10.1002/cne.902240103.Peer-Reviewed Original ResearchConceptsRat optic nerve fibersOptic nerve fibersNerve fibersUnmyelinated optic nerve axonsPostnatal differentiationOptic nerve axonsPerinodal astrocytic processesAxoglial signallingNodes of RanvierVesiculotubular profilesOptic nerveRat pupsCompact myelin sheathAxolemmal undercoatingAstrocytic processesNerve axonsAxonal diameterMyelin sheathAxon segmentsAxonsAxolemmaRanvierDaysElectron microscopic observationsFunctional differentiation
1983
Regional node-like membrane specializations in non-myelinated axons of rat retinal nerve fiber layer
Hildebrand C, Waxman S. Regional node-like membrane specializations in non-myelinated axons of rat retinal nerve fiber layer. Brain Research 1983, 258: 23-32. PMID: 24010160, DOI: 10.1016/0006-8993(83)91222-2.Peer-Reviewed Original ResearchConceptsNerve fiber layerInitial axon segmentNon-myelinated axonsAxon segmentsGlial processesFiber layerRetinal nerve fiber layerMembrane specializationsRetinal ganglion cellsAdult rat retinaNodes of RanvierRat retinal nerve fiber layerOptic nerveGanglion cellsMuller cellsRat retinaAstrocytic processesAxonsAxon circumferenceLimited proportionCell processes
1979
Ultrastructural and cytochemical observations in a case of dominantly inherited hypertrophic (Charcot-Marie-Tooth) neuropathy.
Waxman S, Ouellette E. Ultrastructural and cytochemical observations in a case of dominantly inherited hypertrophic (Charcot-Marie-Tooth) neuropathy. Journal Of Neuropathology & Experimental Neurology 1979, 38: 586-95. PMID: 533859, DOI: 10.1097/00005072-197911000-00003.Peer-Reviewed Original Research
1978
Intra-axonal ferric ion-ferrocyanide staining of nodes of Ranvier and initial segments in central myelinated fibers
Waxman S, Quick D. Intra-axonal ferric ion-ferrocyanide staining of nodes of Ranvier and initial segments in central myelinated fibers. Brain Research 1978, 144: 1-10. PMID: 76497, DOI: 10.1016/0006-8993(78)90430-4.Peer-Reviewed Original ResearchConceptsNodes of RanvierInitial segmentFerric ion-ferrocyanide stainingCentral nervous tissueAxon initial segmentCentral myelinated fibersSpinal cordMyelinated fibersNervous tissueMyelinated neuronsAxon hillockCell bodiesNodal axolemmaRanvierNeuronsAxolemmaStainingElectron-dense substanceStainInternodal regionsUltrastructural dataSpecialized regions
1977
Evidence for inorganic phosphate binding at nodes of Ranvier in peripheral nerves
Quick D, Waxman S. Evidence for inorganic phosphate binding at nodes of Ranvier in peripheral nerves. Journal Of The Neurological Sciences 1977, 33: 207-211. PMID: 903783, DOI: 10.1016/0022-510x(77)90194-0.Peer-Reviewed Original Research
1976
Ultrastructure of visual callosal axons in the rabbit
Waxman S, Swadlow H. Ultrastructure of visual callosal axons in the rabbit. Experimental Neurology 1976, 53: 115-127. PMID: 964332, DOI: 10.1016/0014-4886(76)90287-9.Peer-Reviewed Original Research
1973
Features associated with paranodal demyelination at a specialized site in the non-pathological nervous system
Waxman S. Features associated with paranodal demyelination at a specialized site in the non-pathological nervous system. Journal Of The Neurological Sciences 1973, 19: 357-362. PMID: 4716850, DOI: 10.1016/0022-510x(73)90099-3.Peer-Reviewed Original Research
1972
MORPHOLOGICAL CORRELATES OF FUNCTIONAL DIFFERENTIATION OF NODES OF RANVIER ALONG SINGLE FIBERS IN THE NEUROGENIC ELECTRIC ORGAN OF THE KNIFE FISH STERNARCHUS
Waxman S, Pappas G, Bennett M. MORPHOLOGICAL CORRELATES OF FUNCTIONAL DIFFERENTIATION OF NODES OF RANVIER ALONG SINGLE FIBERS IN THE NEUROGENIC ELECTRIC ORGAN OF THE KNIFE FISH STERNARCHUS. Journal Of Cell Biology 1972, 53: 210-224. PMID: 5013596, PMCID: PMC2108696, DOI: 10.1083/jcb.53.1.210.Peer-Reviewed Original ResearchConceptsNodes of RanvierTypical nodeMorphological correlatesSurface areaMicroSingle nerve fibersElectron microscopyLarge nodesPacked layerSeries capacitySpinal neuronsTypical structureNerve fibersElectric organLevel of entrySingle fiberMembrane surface areaNeural originRunning segmentsAxonsNodal morphologyFiber axisFibersTypical appearanceUnique neural systems
1971
An electron microscopic study of synaptic morphology in the oculomotor nuclei of three inframammalian species
Waxman S, Pappas G. An electron microscopic study of synaptic morphology in the oculomotor nuclei of three inframammalian species. The Journal Of Comparative Neurology 1971, 143: 41-71. PMID: 4329004, DOI: 10.1002/cne.901430105.Peer-Reviewed Original ResearchConceptsOculomotor nucleusOculomotor neuronsLarge neuronsElectrotonic couplingSubjunctional dense bodiesDistribution of synapsesMajority of synapsesSmall-diameter dendritesClose appositionContralateral oculomotor nucleusPrevious electrophysiological studiesDense-core vesiclesMultipolar interneuronsNodes of RanvierAxodendritic synapsesAxosomatic synapsesProximal dendritesClose membrane appositionSynaptic contactsPresynaptic fibersSynaptic profilesGlial elementsSmall interneuronsNeuronal typesGlial lamellaeAn ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord
Waxman S. An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord. Brain Research 1971, 27: 189-201. PMID: 5552167, DOI: 10.1016/0006-8993(71)90248-4.Peer-Reviewed Original ResearchConceptsPattern of myelinationSpinal cordOculomotor nucleusElectromotor nucleusProportion of synapsesPreterminal fibersPeripheral nerve fibersCentral nervous systemCentral myelinated fibersNodes of RanvierUnmyelinated regionsNerve fibersMyelinated fibersConduction velocityNervous systemCordMyelinationNervous impulsesUltrastructural studySynapsesClose membrane appositionBulbous protrusionsMembrane appositionAxonsNucleus