2021
Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example
Hatoum AS, Wendt FR, Galimberti M, Polimanti R, Neale B, Kranzler HR, Gelernter J, Edenberg HJ, Agrawal A. Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example. Drug And Alcohol Dependence 2021, 229: 109115. PMID: 34710714, PMCID: PMC9358969, DOI: 10.1016/j.drugalcdep.2021.109115.Peer-Reviewed Original ResearchConceptsGenome-wide significant variantsCandidate gene predictionGenetic predictionRandom SNPsPolygenic traitRandom phenotypeCandidate SNPsSimulated phenotypesPsychiatric geneticsGenetic machineSignificant variantsBinary phenotypesCandidate variantsSNPsAncestryPhenotypeAllele frequenciesVariantsMachine learning modelsGenetic testsLearning model
2017
A genome-wide gene-by-trauma interaction study of alcohol misuse in two independent cohorts identifies PRKG1 as a risk locus
Polimanti R, Kaufman J, Zhao H, Kranzler HR, Ursano RJ, Kessler RC, Gelernter J, Stein MB. A genome-wide gene-by-trauma interaction study of alcohol misuse in two independent cohorts identifies PRKG1 as a risk locus. Molecular Psychiatry 2017, 23: 154-160. PMID: 28265120, PMCID: PMC5589475, DOI: 10.1038/mp.2017.24.Peer-Reviewed Original ResearchConceptsGenome-wide interaction studyGene Ontology (GO) enrichment analysisOntology enrichment analysisProtein kinase 1Protein regulationSame effect directionCyclic GMP-dependent protein kinase 1Circadian rhythm regulationRisk lociWide geneEnrichment analysisInteraction studiesKinase 1Individual genetic riskPsychiatric geneticsCalcium-activated potassium channelsGenesLociPRKG1Potassium channelsEffect directionRhythm regulationAlcohol use problemsRegulationAlcohol misuse