Featured Publications
Synergistic effects of common schizophrenia risk variants
Schrode N, Ho SM, Yamamuro K, Dobbyn A, Huckins L, Matos MR, Cheng E, Deans PJM, Flaherty E, Barretto N, Topol A, Alganem K, Abadali S, Gregory J, Hoelzli E, Phatnani H, Singh V, Girish D, Aronow B, Mccullumsmith R, Hoffman GE, Stahl EA, Morishita H, Sklar P, Brennand KJ. Synergistic effects of common schizophrenia risk variants. Nature Genetics 2019, 51: 1475-1485. PMID: 31548722, PMCID: PMC6778520, DOI: 10.1038/s41588-019-0497-5.Peer-Reviewed Original ResearchMeSH KeywordsChloride ChannelsCRISPR-Cas SystemsFemaleFurinGene EditingGene Expression RegulationGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansInduced Pluripotent Stem CellsMaleMonomeric Clathrin Assembly ProteinsPolymorphism, Single NucleotideQuantitative Trait LociSchizophreniaSNARE ProteinsConceptsExpression quantitative trait lociComplex genetic disorderEQTL genesCommon variantsQuantitative trait lociRisk variantsGene expression differencesPsychiatric disease riskCommon risk variantsPluripotent stem cellsSchizophrenia risk variantsGenetic disordersTrait lociGene perturbationsGenetic approachesExpression differencesGene editingStem cellsGeneralizable phenomenonSynaptic functionGenesVariantsCRISPRLociSpecific effectsNeuron-specific signatures in the chromosomal connectome associated with schizophrenia risk
Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, Powell S, Yashaswini C, LaMarca EA, Kassim B, Javidfar B, Espeso-Gil S, Li A, Won H, Geschwind DH, Ho SM, MacDonald M, Hoffman GE, Roussos P, Zhang B, Hahn CG, Weng Z, Brennand KJ, Akbarian S. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science 2018, 362 PMID: 30545851, PMCID: PMC6408958, DOI: 10.1126/science.aat4311.Peer-Reviewed Original ResearchMeSH KeywordsBrainCells, CulturedChromatinChromatin Assembly and DisassemblyChromosomes, HumanConnectomeEpigenesis, GeneticGene Expression Regulation, DevelopmentalGenetic Predisposition to DiseaseGenome, HumanGenome-Wide Association StudyHumansMaleNeural Stem CellsNeurogenesisNeurogliaNeuronsNucleic Acid ConformationProtein Interaction MapsProteomicsRiskSchizophreniaTranscription, GeneticTranscriptomeConceptsCoordinated transcriptional regulationThree-dimensional genomeSpatial genome organizationChromosomal contact mapsNeural progenitor cellsSchizophrenia risk variantsGenome organizationChromatin remodelingChromosomal conformationTranscriptional regulationProteomic interactionsDevelopmental remodelingHeritable riskGlial differentiationRisk variantsContact mapsProgenitor cellsVariant sequencesGenesConformation changeNeuronal connectivitySchizophrenia riskSequenceNeuropsychiatric diseasesDistal targetsNeuronal impact of patient-specific aberrant NRXN1α splicing
Flaherty E, Zhu S, Barretto N, Cheng E, Deans PJM, Fernando MB, Schrode N, Francoeur N, Antoine A, Alganem K, Halpern M, Deikus G, Shah H, Fitzgerald M, Ladran I, Gochman P, Rapoport J, Tsankova NM, McCullumsmith R, Hoffman GE, Sebra R, Fang G, Brennand KJ. Neuronal impact of patient-specific aberrant NRXN1α splicing. Nature Genetics 2019, 51: 1679-1690. PMID: 31784728, PMCID: PMC7451045, DOI: 10.1038/s41588-019-0539-z.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAnimalsAutism Spectrum DisorderBipolar DisorderCalcium-Binding ProteinsCase-Control StudiesDepressive Disorder, MajorFemaleGene ExpressionHeterozygoteHumansInduced Pluripotent Stem CellsMaleMiceNeural Cell Adhesion MoleculesProtein IsoformsSchizophreniaSequence DeletionModeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression
Seah C, Breen M, Rusielewicz T, Bader H, Xu C, Hunter C, McCarthy B, Deans P, Chattopadhyay M, Goldberg J, Dobariya S, Desarnaud F, Makotkine I, Flory J, Bierer L, Staniskyte M, Noggle S, Huckins L, Paull D, Brennand K, Yehuda R. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience 2022, 25: 1434-1445. PMID: 36266471, PMCID: PMC9630117, DOI: 10.1038/s41593-022-01161-y.Peer-Reviewed Original ResearchConceptsPost-traumatic stress disorderPeripheral blood mononuclear cellsGlucocorticoid-induced changesGlucocorticoid-induced gene expressionBlood mononuclear cellsIndividual clinical outcomesEnvironmental risk factorsHuman postmortem brainGlucocorticoid hypersensitivityClinical outcomesGlutamatergic neuronsMononuclear cellsRisk factorsHydrocortisone exposureSevere traumaPostmortem brainsHuman neuronsGlucocorticoid responseInduced neuronsStress disorderNeuronsNew therapeuticsGene expressionGene × environment interactionsCombat veteransModelling schizophrenia using human induced pluripotent stem cells
Brennand K, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage F. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011, 473: 221-225. PMID: 21490598, PMCID: PMC3392969, DOI: 10.1038/nature09915.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAntipsychotic AgentsCell DifferentiationCells, CulturedCellular ReprogrammingChildDisks Large Homolog 4 ProteinFemaleFibroblastsGene Expression ProfilingGene Expression RegulationHumansIntracellular Signaling Peptides and ProteinsLoxapineMaleMembrane ProteinsModels, BiologicalNeuritesNeuronsPhenotypePluripotent Stem CellsReceptors, GlutamateSchizophreniaYoung Adult
2024
Author Correction: Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression
Seah C, Breen M, Rusielewicz T, Bader H, Xu C, Hunter C, McCarthy B, Deans P, Chattopadhyay M, Goldberg J, Dobariya S, Desarnaud F, Makotkine I, Flory J, Bierer L, Staniskyte M, Noggle S, Huckins L, Paull D, Brennand K, Yehuda R. Author Correction: Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience 2024, 1-1. PMID: 39633181, DOI: 10.1038/s41593-024-01854-6.Peer-Reviewed Original ResearchSomatic mosaicism in schizophrenia brains reveals prenatal mutational processes
Maury E, Jones A, Seplyarskiy V, Nguyen T, Rosenbluh C, Bae T, Wang Y, Abyzov A, Khoshkhoo S, Chahine Y, Zhao S, Venkatesh S, Root E, Voloudakis G, Roussos P, Network B, Park P, Akbarian S, Brennand K, Reilly S, Lee E, Sunyaev S, Walsh C, Chess A. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science 2024, 386: 217-224. PMID: 39388546, PMCID: PMC11490355, DOI: 10.1126/science.adq1456.Peer-Reviewed Original ResearchConceptsTranscription factor binding sitesWhole-genome sequencingOpen chromatinMutational processesSomatic mutationsFactor binding sitesSchizophrenia casesSchizophrenia risk genesSomatic mosaicismSomatic variantsRisk genesG mutationGene expressionGermline mutationsBinding sitesGenesMutationsIncreased somatic mutationsChromatinMosaic somatic mutationsPrenatal neurogenesisContext of schizophreniaBrain neuronsSchizophrenia brainVariantsF91. MAPPING THE EFFECTS OF OPIOID USE DISORDER GENETIC ASSOCIATED VARIANTS IN BRAIN PATHWAYS AT A SINGLE CELL LEVEL
Rivera-Hernández M, Martínez-Magaña J, Brennand K, Montalvo-Ortiz J. F91. MAPPING THE EFFECTS OF OPIOID USE DISORDER GENETIC ASSOCIATED VARIANTS IN BRAIN PATHWAYS AT A SINGLE CELL LEVEL. European Neuropsychopharmacology 2024, 87: 254. DOI: 10.1016/j.euroneuro.2024.08.502.Peer-Reviewed Original ResearchOpioid use disorderDopaminergic neuronsReward-related learningOrbital frontal cortexGenetic variantsFunction of dopaminergic neuronsMap genetic variantsGenome-wide studiesCell projection organizationSingle-cell expression profilesCell typesOxytocin signaling pathwayPrefrontal cortexMotivated behaviorFrontal cortexDopaminergic pathwaysUse disorderBrain regionsModulation of chemical synaptic transmissionStriatumSingle-cell RNAseqCell-specific pathwaysBehavioral responsesScRNA-seqStriatum cells42. STRESS EXPOSURE DYNAMICALLY REGULATES EQTL ACTIVITY IN THE POST-MORTEM BRAIN AND IN HIPSC-DERIVED NEURONS
Seah C, Signer R, Young H, Hicks E, Rusielewicz T, Bader H, Xu C, Breen M, Paull D, Yehuda R, Girgenti M, Brennand K, Huckins L. 42. STRESS EXPOSURE DYNAMICALLY REGULATES EQTL ACTIVITY IN THE POST-MORTEM BRAIN AND IN HIPSC-DERIVED NEURONS. European Neuropsychopharmacology 2024, 87: 71-72. DOI: 10.1016/j.euroneuro.2024.08.156.Peer-Reviewed Original ResearchPost-mortem brainsTranscription factor binding sitesAbsence of cellular stressCombat-exposed veteransFactor binding sitesImpact gene expressionBinding sitesGR binding sitesPositive regulatory activityMotif enrichmentSequence readsCRISPRi screenOpen chromatinFunctional annotationBrain regionsTraumatic stressCRISPR screensEQTLTraumatic experiencesLeading locusPTSDPerturbed genesRegulatory architectureTranscriptomic activityTranscriptomic responseRegulation of cell distancing in peri-plaque glial nets by Plexin-B1 affects glial activation and amyloid compaction in Alzheimer’s disease
Huang Y, Wang M, Ni H, Zhang J, Li A, Hu B, Junqueira Alves C, Wahane S, Rios de Anda M, Ho L, Li Y, Kang S, Neff R, Kostic A, Buxbaum J, Crary J, Brennand K, Zhang B, Zou H, Friedel R. Regulation of cell distancing in peri-plaque glial nets by Plexin-B1 affects glial activation and amyloid compaction in Alzheimer’s disease. Nature Neuroscience 2024, 27: 1489-1504. PMID: 38802590, PMCID: PMC11346591, DOI: 10.1038/s41593-024-01664-w.Peer-Reviewed Original ResearchPlexin-B1Alzheimer's diseaseGlial netsNetwork hub genesLate-onset ADPlaque-associated astrocytesPathophysiology of Alzheimer's diseaseMouse AD modelPlaque compactionNeuritic dystrophyHub genesGuidance receptorsTranscriptional changesAD modelAmyloid depositsAmyloidReducing neuroinflammationGlial cellsReactive astrocytesReceptor Plexin-B1Net activityGlial processesDeletionGenesCell distanceMassively parallel characterization of regulatory elements in the developing human cortex
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki P, Inoue F, Pereira D, Capauto D, Norton S, Vaccarino F, Pollen A, Nowakowski T, Ahituv N, Pollard K, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Bendl J, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Fullard J, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Haroutunian V, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Hoffman G, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kellis M, Khullar S, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Roussos P, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024, 384: eadh0559. PMID: 38781390, DOI: 10.1126/science.adh0559.Peer-Reviewed Original ResearchConceptsGene regulatory elementsRegulatory elementsRegulation of enhancer activityCharacterization of regulatory elementsCis-regulatory activityNeuronal developmentPrimary cellsEnhanced activityGene regulationHuman neuronal developmentNucleotide changesEnhancer sequencesSequence basisUpstream regulatorComprehensive catalogHuman cellsDeveloping cortexSequenceVariantsOrganoidsCellsCerebral organoidsCortexHuman cortexNucleotideCross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain
Wen C, Margolis M, Dai R, Zhang P, Przytycki P, Vo D, Bhattacharya A, Matoba N, Tang M, Jiao C, Kim M, Tsai E, Hoh C, Aygün N, Walker R, Chatzinakos C, Clarke D, Pratt H, Peters M, Gerstein M, Daskalakis N, Weng Z, Jaffe A, Kleinman J, Hyde T, Weinberger D, Bray N, Sestan N, Geschwind D, Roeder K, Gusev A, Pasaniuc B, Stein J, Love M, Pollard K, Liu C, Gandal M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Bendl J, Berretta S, Bharadwaj R, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clement A, Collado-Torres L, Cooper G, Crawford G, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Fullard J, Galani K, Galeev T, Gaynor S, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Haroutunian V, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Hoffman G, Huang Y, Huuki-Myers L, Hwang A, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kellis M, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollen A, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Roussos P, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Voloudakis G, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain. Science 2024, 384: eadh0829. PMID: 38781368, DOI: 10.1126/science.adh0829.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesGenome-wide association study lociSplicing quantitative trait lociQuantitative trait lociSplicing regulationCross-ancestryTrait lociAssociation studiesRegulatory elementsCellular contextHuman brainTranscriptome regulationCoexpression networkRisk genesAutism spectrum disorderGenesCellular heterogeneityComprehensive landscapeSpectrum disorderIsoformsSplicingIncreased cellular heterogeneityLociNeuronal maturationRegulationSingle-cell multi-cohort dissection of the schizophrenia transcriptome
Ruzicka W, Mohammadi S, Fullard J, Davila-Velderrain J, Subburaju S, Tso D, Hourihan M, Jiang S, Lee H, Bendl J, Voloudakis G, Haroutunian V, Hoffman G, Roussos P, Kellis M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Rozowsky J, Ruth M, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024, 384: eadg5136. PMID: 38781388, DOI: 10.1126/science.adg5136.Peer-Reviewed Original ResearchConceptsGenetic risk factorsRisk factorsTranscriptional changesHeterogeneity of schizophreniaNeuronal cell statesSchizophrenia pathophysiologySingle-cell dissectionExcitatory neuronsEffective therapySchizophrenia transcriptomicsCortical cytoarchitectureSingle-cell atlasGenomic variantsCell groupsHuman prefrontal cortexMolecular pathwaysSchizophreniaTranscriptional alterationsTranscriptomic changesPrefrontal cortexCell statesAlterationsTherapyPathophysiologyDissectionA data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex
Huuki-Myers L, Spangler A, Eagles N, Montgomery K, Kwon S, Guo B, Grant-Peters M, Divecha H, Tippani M, Sriworarat C, Nguyen A, Ravichandran P, Tran M, Seyedian A, Hyde T, Kleinman J, Battle A, Page S, Ryten M, Hicks S, Martinowich K, Collado-Torres L, Maynard K, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Bendl J, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Fullard J, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Haroutunian V, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Hoffman G, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kellis M, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Roussos P, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex. Science 2024, 384: eadh1938. PMID: 38781370, PMCID: PMC11398705, DOI: 10.1126/science.adh1938.Peer-Reviewed Original ResearchConceptsRNA sequencing dataCell type compositionGene expression platformSpatial transcriptomics technologiesAnterior-posterior axisCell-cell interactionsTranscriptome mapExpression platformHuman dorsolateral prefrontal cortexTranscriptomic technologiesSingle-cellCell typesPrefrontal cortexMolecular organizationDorsolateral prefrontal cortexHuman prefrontal cortexSingle-cell genomics and regulatory networks for 388 human brains
Emani P, Liu J, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee C, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken T, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard J, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman G, Huang A, Jiang Y, Jin T, Jorstad N, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran J, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan A, Riesenmy T, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini K, Wamsley B, Wang G, Xia Y, Xiao S, Yang A, Zheng S, Gandal M, Lee D, Lein E, Roussos P, Sestan N, Weng Z, White K, Won H, Girgenti M, Zhang J, Wang D, Geschwind D, Gerstein M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Berretta S, Bharadwaj R, Bhattacharya A, Brennand K, Capauto D, Champagne F, Chatzinakos C, Chen H, Cheng L, Chess A, Chien J, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duong D, Eagles N, Edelstein J, Galani K, Girdhar K, Goes F, Greenleaf W, Guo H, Guo Q, Hadas Y, Hallmayer J, Han X, Haroutunian V, He C, Hicks S, Ho M, Ho L, Huang Y, Huuki-Myers L, Hyde T, Iatrou A, Inoue F, Jajoo A, Jiang L, Jin P, Jops C, Jourdon A, Kellis M, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Li J, Li M, Lin X, Liu S, Liu C, Loupe J, Lu D, Ma L, Mariani J, Martinowich K, Maynard K, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Mukamel E, Nairn A, Nemeroff C, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Pinto D, Pochareddy S, Pollard K, Pollen A, Przytycki P, Purmann C, Qin Z, Qu P, Raj T, Reach S, Reimonn T, Ressler K, Ross D, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Seyfried N, Shao Z, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wang T, Wang S, Wang Y, Wei Y, Weimer A, Weinberger D, Wen C, Whalen S, Willsey A, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang Y, Ziffra R, Zeier Z, Zintel T. Single-cell genomics and regulatory networks for 388 human brains. Science 2024, 384: eadi5199. PMID: 38781369, PMCID: PMC11365579, DOI: 10.1126/science.adi5199.Peer-Reviewed Original ResearchConceptsSingle-cell genomicsSingle-cell expression quantitative trait locusExpression quantitative trait lociDrug targetsQuantitative trait lociPopulation-level variationSingle-cell expressionCell typesDisease-risk genesTrait lociGene familyRegulatory networksGene expressionCell-typeMultiomics datasetsSingle-nucleiGenomeGenesCellular changesHeterogeneous tissuesExpressionCellsChromatinLociMultiomicsAligning Stem Cell Models and Postmortem Studies to Query Striatal Neurodevelopment in Schizophrenia
Brennand K. Aligning Stem Cell Models and Postmortem Studies to Query Striatal Neurodevelopment in Schizophrenia. American Journal Of Psychiatry 2024, 181: 465-467. PMID: 38822585, DOI: 10.1176/appi.ajp.20240245.Peer-Reviewed Original ResearchMonozygotic twins discordant for schizophrenia differ in maturation and synaptic transmission
Stern S, Zhang L, Wang M, Wright R, Rosh I, Hussein Y, Stern T, Choudhary A, Tripathi U, Reed P, Sadis H, Nayak R, Shemen A, Agarwal K, Cordeiro D, Peles D, Hang Y, Mendes A, Baul T, Roth J, Coorapati S, Boks M, McCombie W, Hulshoff Pol H, Brennand K, Réthelyi J, Kahn R, Marchetto M, Gage F. Monozygotic twins discordant for schizophrenia differ in maturation and synaptic transmission. Molecular Psychiatry 2024, 29: 3208-3222. PMID: 38704507, PMCID: PMC11449799, DOI: 10.1038/s41380-024-02561-1.Peer-Reviewed Original ResearchCo-twinSchizophrenia patientsMonozygotic twinsHippocampal synaptic deficitsHealthy twinsSynapse-related genesDepressive disorderPsychiatric disordersSchizophreniaControl twinsTwin pairsSynaptic activitySynaptic deficitsTwin siblingsNeurophysiological abnormalitiesGroup of patientsSynaptic transmissionDiscordant twinsDisordersHippocampal neuronsNeuronsReprogrammed iPSCsIPSC modelsPatientsSiblings209 Transcriptomic Analysis of the Post-mortem Brain in Intracranial Atherosclerosis Implicates Interferon Signaling
Seah C, Devarajan A, Jurczyszak D, Chakka A, Huckins L, Brennand K, Girgenti M. 209 Transcriptomic Analysis of the Post-mortem Brain in Intracranial Atherosclerosis Implicates Interferon Signaling. Neurosurgery 2024, 70: 55-56. DOI: 10.1227/neu.0000000000002809_209.Peer-Reviewed Original ResearchIntracranial atherosclerotic stenosisIntracranial arteriesInterferon-inducible genesInterferon signalingPeripheral atherosclerosisCerebral atherosclerosisExpression of interferon-inducible genesGlial cellsSymptomatic intracranial atherosclerotic stenosisInduced pluripotent stem cellsPost-mortem brainsWorsened functional outcomesHuman induced pluripotent stem cellsUpregulation of interferon inducible genesCause of ischemic strokePluripotent stem cellsRisk of atherosclerosisLipid-rich plaquesRisk factor managementClinical outcomesPoor prognosisExcitatory neuronsIncreased morbidityHistopathological profileFunctional outcomesDissecting the biology of feeding and eating disorders
Huckins L, Brennand K, Bulik C. Dissecting the biology of feeding and eating disorders. Trends In Molecular Medicine 2024, 30: 380-391. PMID: 38431502, DOI: 10.1016/j.molmed.2024.01.009.Peer-Reviewed Original ResearchGenome-wide association studiesVariants to genesGenes to pathwaysSignificant lociFunctional genomicsAssociation studiesGenetic relationshipsIntestinal microbiotaGenetic researchGenomeGenetic correlationsGenesMetabolic contributorsAnorexia nervosaEating disordersPathwayBiologyMetabolic outcomesRisk factorsLociMicrobiotaPhenomicsLethal illnessTraitsFeeding
2023
Multi-omic profiling of the developing human cerebral cortex at the single-cell level
Zhu K, Bendl J, Rahman S, Vicari J, Coleman C, Clarence T, Latouche O, Tsankova N, Li A, Brennand K, Lee D, Yuan G, Fullard J, Roussos P. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Science Advances 2023, 9: eadg3754. PMID: 37824614, PMCID: PMC10569714, DOI: 10.1126/sciadv.adg3754.Peer-Reviewed Original ResearchConceptsCis-regulatory elementsChromatin accessibilityGene expressionPseudotime trajectory analysisNeuronal lineage commitmentMulti-omics profilingSingle-cell levelSpecific genetic lociDevelopmental time pointsChromatin structureType-specific domainsLineage determinationCellular complexityLineage commitmentNeuropsychiatric traitsComplex regulationGenetic lociSpatiotemporal activityDynamic changesCritical roleExpressionSpatiotemporal alterationsCell compositionCritical stageNeuropsychiatric diseases