2022
A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning
Hafez A, Zimmerman A, Papageorgiou G, Chandrasekaran J, Amoah S, Lin R, Lozano E, Pierotti C, Dell'Orco M, Hartley B, Alural B, Lalonde J, Esposito J, Berretta S, Squassina A, Chillotti C, Voloudakis G, Shao Z, Fullard J, Brennand K, Turecki G, Roussos P, Perlis R, Haggarty S, Perrone-Bizzozero N, Brigman J, Mellios N. A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Reports 2022, 38: 110282. PMID: 35045295, PMCID: PMC8809079, DOI: 10.1016/j.celrep.2021.110282.Peer-Reviewed Original ResearchConceptsImportance of circRNAsRNA-binding proteinSynaptic gene expressionCircular RNAsGene expressionOrbitofrontal cortexCompetitive interactionsComplete rescuePsychiatric disordersKnockdownSynaptic expressionMechanistic insightsBrain functionMRNAHomer1bBehavioral flexibilityNeuronal culturesExpressionBiogenesisCircRNAsRNAProteinRegulatesReversal learningDisorders
2020
A psychiatric disease-related circular RNA controls synaptic gene expression and cognition
Zimmerman AJ, Hafez AK, Amoah SK, Rodriguez BA, Dell’Orco M, Lozano E, Hartley BJ, Alural B, Lalonde J, Chander P, Webster MJ, Perlis RH, Brennand KJ, Haggarty SJ, Weick J, Perrone-Bizzozero N, Brigman JL, Mellios N. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Molecular Psychiatry 2020, 25: 2712-2727. PMID: 31988434, PMCID: PMC7577899, DOI: 10.1038/s41380-020-0653-4.Peer-Reviewed Original ResearchConceptsSynaptic gene expressionCircular RNAsGene expressionAlternative mRNA transcriptsDisease-associated circRNAsHomolog 1Neuronal RNAMRNA transcriptsRNASynaptic expressionAge of onsetMammalian brainCircRNAsPotential involvementDorsolateral prefrontal cortexOrbitofrontal cortexBipolar disorderPrefrontal cortexKnockdownExpressionFrontal cortexSynaptic plasticityNeuronal culturesPsychiatric diseasesMouse orbitofrontal cortex
2017
MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice
Mitchell A, Javidfar B, Pothula V, Ibi D, Shen E, Peter C, Bicks L, Fehr T, Jiang Y, Brennand K, Neve R, Gonzalez-Maeso J, Akbarian S. MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Molecular Psychiatry 2017, 23: 123-132. PMID: 28115742, PMCID: PMC5966823, DOI: 10.1038/mp.2016.254.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainChromatin ImmunoprecipitationCognition DisordersComputational BiologyDisease Models, AnimalEpigenomicsGene Expression RegulationGreen Fluorescent ProteinsHistonesMEF2 Transcription FactorsMiceMice, Inbred C57BLMice, KnockoutNerve Tissue ProteinsNeuronsPolymorphism, Single NucleotideSchizophreniaTransduction, GeneticConceptsTherapeutic potentialPrefrontal projection neuronsNeuron-specific promoterUnexplored therapeutic potentialProjection neuronsDrug challengeDisease casesRelated disordersRisk architecturePrefrontal cortexSchizophreniaSingle nucleotide polymorphismsCognitive performancePsychiatric Genomics ConsortiumNeuronal genomeH3K4 hypermethylationRisk lociCognitive enhancement
2016
Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models
Xu J, Hartley BJ, Kurup P, Phillips A, Topol A, Xu M, Ononenyi C, Foscue E, Ho SM, Baguley TD, Carty N, Barros CS, Müller U, Gupta S, Gochman P, Rapoport J, Ellman JA, Pittenger C, Aronow B, Nairn AC, Nestor MW, Lombroso PJ, Brennand KJ. Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models. Molecular Psychiatry 2016, 23: 271-281. PMID: 27752082, PMCID: PMC5395367, DOI: 10.1038/mp.2016.163.Peer-Reviewed Original ResearchConceptsBrain-specific tyrosine phosphataseDephosphorylation of GluN2BExtracellular signal-regulated kinase 1/2Signal-regulated kinase 1/2Glutamate receptor internalizationPluripotent stem cellsKnockout mouse modelTyrosine phosphataseMouse modelKinase 1/2Receptor internalizationImportant regulatorGenetic reductionLoss of NMDARsStem cellsN-methyl DPharmacological inhibitionProtein levelsSynaptic functionSTEP61Patient cohortForebrain neuronsBehavioral deficitsExcitatory neuronsSchizophrenia model
2014
Roles of Heat Shock Factor 1 in Neuronal Response to Fetal Environmental Risks and Its Relevance to Brain Disorders
Hashimoto-Torii K, Torii M, Fujimoto M, Nakai A, Fatimy R, Mezger V, Ju MJ, Ishii S, Chao SH, Brennand KJ, Gage FH, Rakic P. Roles of Heat Shock Factor 1 in Neuronal Response to Fetal Environmental Risks and Its Relevance to Brain Disorders. Neuron 2014, 82: 560-572. PMID: 24726381, PMCID: PMC4051437, DOI: 10.1016/j.neuron.2014.03.002.Peer-Reviewed Original ResearchConceptsCerebral cortical cellsHuman neural progenitor cellsNeural progenitor cellsHeat shock factor 1Maternal seizuresSeizure susceptibilityPrenatal exposureNeuropsychiatric dysfunctionShock factor 1Neuronal responsesBrain cellsSchizophrenia patientsBrain disordersLate onsetMouse cortexStructural abnormalitiesNeuropsychiatric disordersHSF1 deficiencyExposure of embryosProgenitor cellsSubthreshold levelsFactor 1Induced pluripotent stem cellsEnvironmental insultsCortical cellsPhenotypic differences in hiPSC NPCs derived from patients with schizophrenia
Brennand K, Savas J, Kim Y, Tran N, Simone A, Hashimoto-Torii K, Beaumont K, Kim H, Topol A, Ladran I, Abdelrahim M, Matikainen-Ankney B, Chao S, Mrksich M, Rakic P, Fang G, Zhang B, Yates J, Gage F. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Molecular Psychiatry 2014, 20: 361-368. PMID: 24686136, PMCID: PMC4182344, DOI: 10.1038/mp.2014.22.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsAntipsychotic AgentsCell DifferentiationCell MovementCells, CulturedFemaleGene ExpressionHumansMaleMiceMice, Inbred C57BLMice, TransgenicMitochondriaNeural Cell Adhesion MoleculesNeural Stem CellsOxidative StressPhenotypePluripotent Stem CellsProsencephalonProteomicsReactive Oxygen SpeciesSchizophreniaYoung AdultConceptsHiPSC neural progenitor cellsNeural progenitor cellsHuman-induced pluripotent stem cellsHiPSC-derived neuronsGene expressionGene expression comparisonsStable isotope labelingProteomic mass spectrometry analysisAbnormal gene expressionPluripotent stem cellsOxidative stressCytoskeletal remodelingMass spectrometry analysisCellular phenotypesExpression comparisonsDevelopmental mechanismsIsotope labelingPhenotypic differencesBrainSpan AtlasDisease predispositionAmino acidsScalable assayNPC phenotypeStem cellsProgenitor cells
2007
All β Cells Contribute Equally to Islet Growth and Maintenance
Brennand K, Huangfu D, Melton D. All β Cells Contribute Equally to Islet Growth and Maintenance. PLOS Biology 2007, 5: e163. PMID: 17535113, PMCID: PMC1877817, DOI: 10.1371/journal.pbio.0050163.Peer-Reviewed Original ResearchMeSH KeywordsAdult Stem CellsAnimalsCell DifferentiationCell ProliferationFemaleGenes, ReporterGenetic MarkersGreen Fluorescent ProteinsHistonesIn Vitro TechniquesInsulin-Secreting CellsIslets of LangerhansMaleMiceMice, Inbred C57BLMice, TransgenicModels, BiologicalMosaicismRecombinant Fusion ProteinsTetracyclineConceptsBeta-cell populationBeta cellsBeta-cell replicationHealthy adult miceBeta-cell poolCell populationsDifferentiated beta cellsStem cellsReplacement therapyCell replacement therapyAdult miceIslet growthΒ-cellsProtein expressionCell poolReplicative capacityCell replicationHepatocyte populationAdult stem cellsClonal analysisCellsLevel of fluorescenceFluorescent protein expressionPopulationDiabetes