Featured Publications
Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression
Seah C, Breen M, Rusielewicz T, Bader H, Xu C, Hunter C, McCarthy B, Deans P, Chattopadhyay M, Goldberg J, Desarnaud F, Makotkine I, Flory J, Bierer L, Staniskyte M, Noggle S, Huckins L, Paull D, Brennand K, Yehuda R. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience 2022, 25: 1434-1445. PMID: 36266471, PMCID: PMC9630117, DOI: 10.1038/s41593-022-01161-y.Peer-Reviewed Original ResearchConceptsPost-traumatic stress disorderPeripheral blood mononuclear cellsGlucocorticoid-induced changesGlucocorticoid-induced gene expressionBlood mononuclear cellsIndividual clinical outcomesEnvironmental risk factorsHuman postmortem brainGlucocorticoid hypersensitivityClinical outcomesGlutamatergic neuronsMononuclear cellsRisk factorsHydrocortisone exposureSevere traumaPostmortem brainsHuman neuronsGlucocorticoid responseInduced neuronsStress disorderNeuronsNew therapeuticsGene expressionGene × environment interactionsCombat veterans
2023
Activity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders
Ma Y, Bendl J, Hartley B, Fullard J, Abdelaal R, Ho S, Kosoy R, Gochman P, Rapoport J, Hoffman G, Brennand K, Roussos P. Activity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders. Biological Psychiatry 2023, 95: 187-198. PMID: 37454787, PMCID: PMC10787819, DOI: 10.1016/j.biopsych.2023.07.003.Peer-Reviewed Original ResearchConceptsTranscriptional programsBrain-related disordersGlutamatergic neuronsGene coexpression network analysisSignificant heritability enrichmentsEnhancer-promoter interactionsCoexpression network analysisDisease-associated genesExpression of genesLarge-scale geneticMultiomics data integrationChromatin accessibilityEpigenomic changesHeritability enrichmentGenetic regulationRegulatory elementsMultiple genesSequence variationGene expressionAxon guidanceGenetic riskPotassium chloride-induced depolarizationActivity-dependent changesDepolarization-induced changesGenes
2021
Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk
Powell SK, O’Shea C, Townsley K, Prytkova I, Dobrindt K, Elahi R, Iskhakova M, Lambert T, Valada A, Liao W, Ho SM, Slesinger PA, Huckins LM, Akbarian S, Brennand KJ. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Molecular Psychiatry 2021, 28: 1970-1982. PMID: 34493831, PMCID: PMC8898985, DOI: 10.1038/s41380-021-01273-0.Peer-Reviewed Original ResearchConceptsInduced dopaminergic neuronsDopaminergic neuronsMidbrain dopaminergic neuron developmentNeuron identityHuman induced pluripotent stem cellsCannabis use disorderDopaminergic neuron developmentAction potential durationGlutamatergic neuronsDopamine synthesisSpontaneous burstsPotential durationUse disordersNeuronal subtypesPsychiatric diseasesBipolar disorderElectrophysiological propertiesDisease riskHyperpolarization potentialPsychiatric disease riskNeuron developmentOscillatory activityNeuronsHeterogenous cell populationsCell populationsUsing the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons
Li A, Cartwright S, Yu A, Ho SM, Schrode N, Deans PJM, Matos MR, Garcia MF, Townsley KG, Zhang B, Brennand KJ. Using the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons. STAR Protocols 2021, 2: 100580. PMID: 34151300, PMCID: PMC8188621, DOI: 10.1016/j.xpro.2021.100580.Peer-Reviewed Original ResearchConceptsCRISPR inhibitionGene expressionDCas9-KRAB systemEndogenous gene expressionMultiple target genesGene repressionGene activationTarget genesGene manipulationFusion proteinComplete detailsPluripotent stemExpressionGlutamatergic neuronsRepressionGenesPhenotypicProteinStemNeuronsActivationBrain diseasesInhibitionCircadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies
Mishra H, Ying N, Luis A, Wei H, Nguyen M, Nakhla T, Vandenburgh S, Alda M, Berrettini W, Brennand K, Calabrese J, Coryell W, Frye M, Gage F, Gershon E, McInnis M, Nievergelt C, Nurnberger J, Shilling P, Oedegaard K, Zandi P, Kelsoe J, Welsh D, McCarthy M. Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies. Molecular Psychiatry 2021, 26: 3383-3394. PMID: 33674753, PMCID: PMC8418615, DOI: 10.1038/s41380-021-01048-7.Peer-Reviewed Original ResearchConceptsNeuronal precursor cellsBipolar disorderCircadian rhythm abnormalitiesRhythm abnormalitiesBD groupCircadian rhythmPatient-derived neuronsMania/hypomaniaExpression of Per2Induced pluripotent stem cellsPER2 protein levelsGlutamatergic neuronsRecurrent episodesBD patientsControl neuronsLithium respondersEffective drugsNeuropsychiatric illnessLithium responsivenessPatient neuronsNeuronsLithium responseProtein levelsRhythm deficitsPrecursor cells