2023
Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity
Shinoda K, Li R, Rezk A, Mexhitaj I, Patterson K, Kakara M, Zuroff L, Bennett J, von Büdingen H, Carruthers R, Edwards K, Fallis R, Giacomini P, Greenberg B, Hafler D, Ionete C, Kaunzner U, Lock C, Longbrake E, Pardo G, Piehl F, Weber M, Ziemssen T, Jacobs D, Gelfand J, Cross A, Cameron B, Musch B, Winger R, Jia X, Harp C, Herman A, Bar-Or A. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2207291120. PMID: 36634138, PMCID: PMC9934304, DOI: 10.1073/pnas.2207291120.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, CD20CD8-Positive T-LymphocytesFlow CytometryHumansLeukocytes, MononuclearMultiple SclerosisRecurrenceConceptsEarly disease activityDisease activityCD8 T cellsT cellsCD20 therapyPeripheral blood mononuclear cellsCellular immune profilesNew disease activityMS disease activityT cell poolMultiple sclerosis patientsAnti-inflammatory profileBlood mononuclear cellsTreatment-associated changesMultiparametric flow cytometryCentral nervous systemFurther dosingRepeat infusionsImmune profileMS patientsSclerosis patientsValidation cohortMononuclear cellsRelapse developmentImmune cascade
2022
Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19
Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, Schupp JC, Asashima H, Liu Y, Cosme C, Deng W, Chen M, Raredon MSB, Hoehn KB, Wang G, Wang Z, DeIuliis G, Ravindra NG, Li N, Castaldi C, Wong P, Fournier J, Bermejo S, Sharma L, Casanovas-Massana A, Vogels CBF, Wyllie AL, Grubaugh ND, Melillo A, Meng H, Stein Y, Minasyan M, Mohanty S, Ruff WE, Cohen I, Raddassi K, Niklason L, Ko A, Montgomery R, Farhadian S, Iwasaki A, Shaw A, van Dijk D, Zhao H, Kleinstein S, Hafler D, Kaminski N, Dela Cruz C. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications 2022, 13: 440. PMID: 35064122, PMCID: PMC8782894, DOI: 10.1038/s41467-021-27716-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAgedAntibodies, Monoclonal, HumanizedCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCells, CulturedCOVID-19COVID-19 Drug TreatmentFemaleGene Expression ProfilingGene Expression RegulationHumansImmunity, InnateMaleReceptors, Antigen, B-CellReceptors, Antigen, T-CellRNA-SeqSARS-CoV-2Single-Cell AnalysisConceptsProgressive COVID-19B cell clonesSingle-cell analysisT cellsImmune responseMulti-omics single-cell analysisCOVID-19Cell clonesAdaptive immune interactionsSevere COVID-19Dynamic immune responsesGene expressionSARS-CoV-2 virusAdaptive immune systemSomatic hypermutation frequenciesCellular effectsProtein markersEffector CD8Immune signaturesProgressive diseaseHypermutation frequencyProgressive courseClassical monocytesClonesImmune interactions
2021
Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children
Ramaswamy A, Brodsky NN, Sumida TS, Comi M, Asashima H, Hoehn KB, Li N, Liu Y, Shah A, Ravindra NG, Bishai J, Khan A, Lau W, Sellers B, Bansal N, Guerrerio P, Unterman A, Habet V, Rice AJ, Catanzaro J, Chandnani H, Lopez M, Kaminski N, Dela Cruz CS, Tsang JS, Wang Z, Yan X, Kleinstein SH, van Dijk D, Pierce RW, Hafler DA, Lucas CL. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity 2021, 54: 1083-1095.e7. PMID: 33891889, PMCID: PMC8043654, DOI: 10.1016/j.immuni.2021.04.003.Peer-Reviewed Original ResearchConceptsMIS-C patientsDisease severityInflammatory syndromeTCR repertoireSARS-CoV-2-associated multisystem inflammatory syndromeAsymptomatic SARS-CoV-2 infectionSARS-CoV-2 infectionAdult COVID-19Post-infectious complicationsMultisystem inflammatory syndromeCytotoxicity genesHealthy pediatricImmune dysregulationMemory TActive infectionMyeloid dysfunctionPatientsSingle-cell RNA sequencingFlow cytometrySerum proteomicsRepertoire analysisElevated expressionSeverityAlarminsCOVID-19
2017
Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme
Goods BA, Hernandez AL, Lowther DE, Lucca LE, Lerner BA, Gunel M, Raddassi K, Coric V, Hafler DA, Love JC. Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme. PLOS ONE 2017, 12: e0181538. PMID: 28880903, PMCID: PMC5589094, DOI: 10.1371/journal.pone.0181538.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsPD-1 expressionEffector T cellsPD-1Effector cellsGlioblastoma multiformeCheckpoint inhibitorsTim-3T cellsHealthy subjectsCell death protein 1Features of exhaustionDeath protein 1T cell compartmentContext of GBMRecovery of functionCD4 effectorsCD4 cellsRNA sequencingTreatment of cancerHealthy donorsGBM patientsBrain cancerCD4TumorsResisting fatal attraction: a glioma oncometabolite prevents CD8+ T cell recruitment
Lucca LE, Hafler DA. Resisting fatal attraction: a glioma oncometabolite prevents CD8+ T cell recruitment. Journal Of Clinical Investigation 2017, 127: 1218-1220. PMID: 28319049, PMCID: PMC5373854, DOI: 10.1172/jci93565.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesChemokine CXCL10Chemokine CXCL9GliomaGlutaratesHumansIsocitrate DehydrogenaseMutationNeoplasm ProteinsSTAT1 Transcription FactorTumor EscapeConceptsT cellsRecruitment of CD8Antitumor immune responseT cell recruitmentMigration of CD8Cell lung tumorsSyngeneic gliomaChemokines CXCL9Tumor escapeTumor controlImmune infiltrationMetastatic melanomaClinical trialsMalignant gliomasExpression of STAT1Immune surveillanceLung tumorsImmune responseAggressive cancerCell recruitmentCD8Tumor destructionTumorsGliomasCommon mutations
2015
Thymic Selection: To Thine Own Self Be True
Kitz A, Hafler DA. Thymic Selection: To Thine Own Self Be True. Immunity 2015, 42: 788-789. PMID: 25992854, DOI: 10.1016/j.immuni.2015.05.007.Peer-Reviewed Original Research
2011
The CD6 Multiple Sclerosis Susceptibility Allele Is Associated with Alterations in CD4+ T Cell Proliferation
Kofler DM, Severson CA, Mousissian N, De Jager PL, Hafler DA. The CD6 Multiple Sclerosis Susceptibility Allele Is Associated with Alterations in CD4+ T Cell Proliferation. The Journal Of Immunology 2011, 187: 3286-3291. PMID: 21849685, DOI: 10.4049/jimmunol.1100626.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAntigens, CDAntigens, Differentiation, T-LymphocyteCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCell ProliferationCell SeparationCells, CulturedFemaleFlow CytometryGenetic Predisposition to DiseaseGenotypeHumansMaleMultiple SclerosisPhenotypeReverse Transcriptase Polymerase Chain ReactionRisk FactorsRNA, Small InterferingConceptsGenome-wide association studiesAssociation studiesAllelic variantsNew susceptibility lociSusceptibility allelesRisk allelesProliferation defectExon 5Risk-associated allelesSingle nucleotide polymorphismsExtracellular binding sitesCD6 geneSusceptibility lociLinkage disequilibriumMS risk alleleSelective knockdownT cell activationNucleotide polymorphismsAltered proliferationCell proliferationGenetic associationAllelesLong-term activationBinding sitesMS susceptibility alleles
2008
Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells
De Jager PL, Rossin E, Pyne S, Tamayo P, Ottoboni L, Viglietta V, Weiner M, Soler D, Izmailova E, Faron-Yowe L, O’Brien C, Freeman S, Granados S, Parker A, Roubenoff R, Mesirov JP, Khoury SJ, Hafler DA, Weiner HL. Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells. Brain 2008, 131: 1701-1711. PMID: 18567923, PMCID: PMC2730047, DOI: 10.1093/brain/awn118.Peer-Reviewed Original ResearchConceptsRelapsing-remitting MSImmunological profileRRMS subjectsPeripheral bloodUntreated subjectsNatural killer cell profileComprehensive Longitudinal InvestigationAbsence of treatmentCell surface markersCIS subjectsDemyelinating diseaseDemyelination syndromeWomen's HospitalHealthy controlsCytometric profilingCell profilesMonoclonal antibodiesExtension phaseFresh bloodBiomarker discovery effortsDistinct subsetsBloodCell populationsGating strategyHospital
2007
Polyspecificity of T cell and B cell receptor recognition
Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer R, Garcia KC, Goldstein B, Greenspan R, Hafler D, Hodgkin P, Huseby ES, Krakauer DC, Nemazee D, Perelson AS, Pinilla C, Strong RK, Sercarz EE. Polyspecificity of T cell and B cell receptor recognition. Seminars In Immunology 2007, 19: 216-224. PMID: 17398114, PMCID: PMC2034306, DOI: 10.1016/j.smim.2007.02.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen PresentationB-LymphocytesCD8-Positive T-LymphocytesHumansLigandsLymphocyte ActivationMicePeptidesReceptors, Antigen, T-CellT-Lymphocytes
2003
Rapamycin-resistant Proliferation of CD8+ T Cells Correlates with p27 kip1 Down-regulation and bcl-xL Induction, and Is Prevented by an Inhibitor of Phosphoinositide 3-Kinase Activity*
Slavik JM, Lim DG, Burakoff SJ, Hafler DA. Rapamycin-resistant Proliferation of CD8+ T Cells Correlates with p27 kip1 Down-regulation and bcl-xL Induction, and Is Prevented by an Inhibitor of Phosphoinositide 3-Kinase Activity*. Journal Of Biological Chemistry 2003, 279: 910-919. PMID: 14573608, DOI: 10.1074/jbc.m209733200.Peer-Reviewed Original ResearchMeSH KeywordsAnnexin A5Antibiotics, AntineoplasticBcl-X ProteinCD28 AntigensCD3 ComplexCD8-Positive T-LymphocytesCell Cycle ProteinsCell DivisionColoring AgentsCyclin DCyclin-Dependent Kinase Inhibitor p27CyclinsDose-Response Relationship, DrugDown-RegulationEnzyme InhibitorsEstersFluoresceinsHumansKineticsLymphocytesPhosphatidylinositol 3-KinasesProtein BindingProto-Oncogene Proteins c-bcl-2Signal TransductionSirolimusTime FactorsT-LymphocytesTumor Suppressor ProteinsConceptsInhibitor of phosphoinositideT cell receptorMammalian cell typesCell receptorBcl-xL inductionAction of rapamycinBcl-xL expressionT cellsHuman cellsCell survivalP27 Kip1Resistant proliferationCell typesPhosphoinositideHuman CD8RapamycinCellular proliferationEffect of rapamycinMicrobial infectionsCell populationsHigh-affinity T-cell receptorsSelective immunosuppressive effectT Cells CorrelateT cell populationsProliferationAllelic Variation of MHC Structure Alters Peptide Ligands to Induce Atypical Partial Agonistic CD8+ T Cell Function
Lim DG, Slavik JM, Bourcier K, Smith KJ, Hafler DA. Allelic Variation of MHC Structure Alters Peptide Ligands to Induce Atypical Partial Agonistic CD8+ T Cell Function. Journal Of Experimental Medicine 2003, 198: 99-109. PMID: 12847139, PMCID: PMC2196091, DOI: 10.1084/jem.20021796.Peer-Reviewed Original ResearchConceptsT cell functionT cell clonesCell functionReactive T cell clonesCell clonesT cell responsesDifferent T cell responsesIndividual T cell clonesHLA-A2 moleculesAltered peptide ligandHLA-A2 peptideRecognition of MHCT cell receptorMHC-peptide complexesPolymorphic amino acidsFunctional outcomeHLA-A2Peptide ligandsAgonist functionMHC moleculesCell responsesEarly intracellularLong-term expressionCell receptorAntigen recognitionActivated CD8+ T cells in secondary progressive MS secrete lymphotoxin
Buckle GJ, Höllsberg P, Hafler DA. Activated CD8+ T cells in secondary progressive MS secrete lymphotoxin. Neurology 2003, 60: 702-705. PMID: 12601116, DOI: 10.1212/01.wnl.0000048204.89346.30.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodiesCD3 ComplexCD8-Positive T-LymphocytesCell DivisionCell SeparationCells, CulturedCytokinesFemaleFlow CytometryGene FrequencyHumansLymphotoxin-alphaMaleMiddle AgedMultiple Sclerosis, Chronic ProgressiveMultiple Sclerosis, Relapsing-RemittingPolymorphism, Single NucleotideReference ValuesConceptsT cellsNormal controlsSecondary progressive MSCytokine secretion profileFunctional activation statesLymphotoxin secretionProgressive MSActivated CD8Cytokine secretionSecretion profileCytokine genesCD8SecretionSignificant differencesPatientsSignificant increaseActivation stateSingle nucleotide polymorphism analysisPolymorphism analysisNucleotide polymorphism analysisCells
2002
Strength of prior stimuli determines the magnitude of secondary responsiveness in CD8+ T cells
Lim DG, Höllsberg P, Hafler DA. Strength of prior stimuli determines the magnitude of secondary responsiveness in CD8+ T cells. Cellular Immunology 2002, 217: 36-46. PMID: 12425999, DOI: 10.1016/s0008-8749(02)00511-7.Peer-Reviewed Original ResearchConceptsT cellsSecondary responsivenessCostimulatory moleculesInduction of CD8Magnitude of CD8T cell responsesT cell anergyCell anergyCD8Prior stimulusSecondary stimulationPrimary stimulationCell responsesCellular mechanismsFollowing activationPeptide ligandsActivation thresholdStimulationCellsResponsivenessHigh levelsCD4AnergyStimuliStrength of signalDegeneracy, as opposed to specificity, in immunotherapy
Hafler DA. Degeneracy, as opposed to specificity, in immunotherapy. Journal Of Clinical Investigation 2002, 109: 581-584. PMID: 11877465, PMCID: PMC150898, DOI: 10.1172/jci15198.Peer-Reviewed Original Research
2001
Conserved CDR3 Regions in T-Cell Receptor (TCR) CD8+T Cells That Recognize the Tax11-19/HLA-A*0201 Complex in a Subject Infected with Human T-Cell Leukemia Virus Type 1: Relationship of T-Cell Fine Specificity and Major Histocompatibility Complex/Peptide/TCR Crystal Structure
Bourcier K, Lim D, Ding Y, Smith K, Wucherpfennig K, Hafler D. Conserved CDR3 Regions in T-Cell Receptor (TCR) CD8+T Cells That Recognize the Tax11-19/HLA-A*0201 Complex in a Subject Infected with Human T-Cell Leukemia Virus Type 1: Relationship of T-Cell Fine Specificity and Major Histocompatibility Complex/Peptide/TCR Crystal Structure. Journal Of Virology 2001, 75: 9836-9843. PMID: 11559817, PMCID: PMC114556, DOI: 10.1128/jvi.75.20.9836-9843.2001.Peer-Reviewed Original ResearchConceptsT cell clonesT cell receptorCDR3 regionTCR alphaHTLV-1-associated myelopathyTax11-19Beta chainHTLV-1-infected individualsT cell receptor repertoirePeripheral blood lymphocytesHuman T-cell leukemia virusHuman T-cell leukemia virus type 1T-cell leukemia virusVirus type 1TCR usageT cell fine specificityBlood lymphocytesT cellsImmunodominant epitopesReceptor repertoireType 1Fine specificitySimilar recognition patternTCR structureLeukemia virusUncoupling p70s6 Kinase Activation and Proliferation: Rapamycin-Resistant Proliferation of Human CD8+ T Lymphocytes
Slavik J, Lim D, Burakoff S, Hafler D. Uncoupling p70s6 Kinase Activation and Proliferation: Rapamycin-Resistant Proliferation of Human CD8+ T Lymphocytes. The Journal Of Immunology 2001, 166: 3201-3209. PMID: 11207273, DOI: 10.4049/jimmunol.166.5.3201.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalCD2 AntigensCD28 AntigensCD3 ComplexCD8 AntigensCD8-Positive T-LymphocytesCell Line, TransformedClone CellsDose-Response Relationship, DrugDose-Response Relationship, ImmunologicDrug ResistanceEnzyme ActivationEpitopes, T-LymphocyteHLA-A AntigensHumansImmunosuppressive AgentsInterleukin-2Lymphocyte ActivationMajor Histocompatibility ComplexModels, ImmunologicalRibosomal Protein S6 KinasesSirolimusT-Lymphocyte SubsetsConceptsT cell clonesT cellsEffect of rapamycinHuman T cell responsesPeripheral blood T cellsCell clonesHeterogeneous proliferative responsesT cell responsesBlood T cellsT cell proliferationSpecific costimulatory signalsGraft infiltrationResistant proliferationInhibition of AgGraft rejectionHuman CD8IL-2RT lymphocytesProliferative responseCostimulatory signalsCell responsesPresence of rapamycinCell proliferationRapamycinProliferationDecreases in Interleukin-4 Secretion by Invariant CD4−CD8−Vα24JαQ T Cells in Peripheral Blood of Patients with Relapsing–Remitting Multiple Sclerosis
Gausling R, Trollmo C, Hafler D. Decreases in Interleukin-4 Secretion by Invariant CD4−CD8−Vα24JαQ T Cells in Peripheral Blood of Patients with Relapsing–Remitting Multiple Sclerosis. Clinical Immunology 2001, 98: 11-17. PMID: 11141321, DOI: 10.1006/clim.2000.4942.Peer-Reviewed Original ResearchMeSH KeywordsAdultCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesClone CellsHumansInterleukin-4MaleMiddle AgedMultiple Sclerosis, Relapsing-RemittingConceptsRelapsing-remitting multiple sclerosisT cell receptorIFN-gamma secretionMultiple sclerosisT cell clonesT cellsCytokine profilePeripheral bloodIL-4Cell clonesProgressive multiple sclerosisRR-MS patientsCytokine secretion patternsRelapsing-remitting MSInterleukin-4 secretionT cell functionalityCytokine secretionHealthy controlsSecretion patternPatientsCP-MSImmune systemControl individualsCell receptorSecretion
2000
Examination of CD8+ T Cell Function in Humans Using MHC Class I Tetramers: Similar Cytotoxicity but Variable Proliferation and Cytokine Production Among Different Clonal CD8+ T Cells Specific to a Single Viral Epitope
Lim D, Bourcier K, Freeman G, Hafler D. Examination of CD8+ T Cell Function in Humans Using MHC Class I Tetramers: Similar Cytotoxicity but Variable Proliferation and Cytokine Production Among Different Clonal CD8+ T Cells Specific to a Single Viral Epitope. The Journal Of Immunology 2000, 165: 6214-6220. PMID: 11086055, DOI: 10.4049/jimmunol.165.11.6214.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, ViralB7-1 AntigenCD58 AntigensCD8-Positive T-LymphocytesCell Line, TransformedClone CellsCytokinesCytotoxicity, ImmunologicDose-Response Relationship, ImmunologicEpitopes, T-LymphocyteGene Products, taxGenes, T-Cell Receptor betaHLA-A2 AntigenHuman T-lymphotropic virus 1HumansLymphocyte ActivationPeptide FragmentsStaining and LabelingConceptsT cell clonesCytokine secretionT cellsEffector functionsCell clonesCostimulatory moleculesViral epitopesHuman T-cell lymphotrophic virusDifferent T cell clonesImmunodominant viral epitopesCytotoxic effector functionClonal originT cell functionSingle viral epitopeMHC class IDifferent clonal originCD2-LFA-3 interactionInduction of proliferationClonal CD8Cytokine productionPeripheral bloodCTL populationsIL-2Lymphotrophic virusProliferative response
1999
Direct analysis of viral-specific CD8+ T cells with soluble HLA-A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy.
Bieganowska K, Höllsberg P, Buckle G, Lim D, Greten T, Schneck J, Altman J, Jacobson S, Ledis S, Hanchard B, Chin J, Morgan O, Roth P, Hafler D. Direct analysis of viral-specific CD8+ T cells with soluble HLA-A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy. The Journal Of Immunology 1999, 162: 1765-71. PMID: 9973440, DOI: 10.4049/jimmunol.162.3.1765.Peer-Reviewed Original ResearchMeSH KeywordsAdultB7-1 AntigenCD28 AntigensCD8-Positive T-LymphocytesFemaleGene Products, taxHLA-A2 AntigenHuman T-lymphotropic virus 1HumansLymphocyte ActivationMaleMiddle AgedParaparesis, Tropical SpasticPeptide FragmentsPhenotypeProtein ConformationReceptors, Antigen, T-Cell, alpha-betaReceptors, ChemokineReceptors, Interleukin-2SolubilityConceptsT cellsIL-2RMHC class I tetramersHuman T-cell lymphotropic virusViral-specific CD8Class I tetramersProgressive neurologic diseaseDifferent chemokine receptorsHLA-A2 alleleCentral nervous systemTCR Vbeta chainsReactive CD8TCR usageInflammatory infiltrateVbeta chainsChemokine receptorsNeurologic diseaseImmune responseCD8Lymphotropic virusMyelopathyNervous systemPatientsHTLVClonal expansion
1997
Autoantigen recognition by human CD8 T cell clones: enhanced agonist response induced by altered peptide ligands.
Dressel A, Chin JL, Sette A, Gausling R, Höllsberg P, Hafler DA. Autoantigen recognition by human CD8 T cell clones: enhanced agonist response induced by altered peptide ligands. The Journal Of Immunology 1997, 159: 4943-51. PMID: 9366420, DOI: 10.4049/jimmunol.159.10.4943.Peer-Reviewed Original ResearchConceptsT cell clonesCD8 T cell clonesTCR contact residuesHLA-A2Superagonist peptideCell clonesSelf-AgHLA-A2.1 binding motifsHuman autoimmune diseasesAltered peptide ligandMHC class IMyelin peptidesHLA-A2.1Autoimmune diseasesAutoantigen recognitionSecrete cytokinesEffector responsesLow MHCImmune responseAgonist responsesImmunodominant epitopesAgonist peptideAg recognitionContact residuesCytotoxic response