2006
Diffusion wavelets
Coifman R, Maggioni M. Diffusion wavelets. Applied And Computational Harmonic Analysis 2006, 21: 53-94. DOI: 10.1016/j.acha.2006.04.004.Peer-Reviewed Original ResearchPseudo-differential operatorsFast multipole methodClass of operatorsNon-homogeneous mediaAssociated Green's functionSpectral theorySymmetric operatorsMultiresolution analysisText documentsDownsampling operatorNumerical rankCoarse grainingCalderón–ZygmundStable algorithmMultiscale computationsData cloudOrthonormal scaling functionsMultipole methodDirectory structureOperator TScaling functionsGreen's functionDiffusion waveletsManifoldMultiscale analysis
1990
Multiresolution Analysis in Non-Homogeneous Media
Coifman R. Multiresolution Analysis in Non-Homogeneous Media. Inverse Problems And Theoretical Imaging 1990, 259-262. DOI: 10.1007/978-3-642-75988-8_25.Peer-Reviewed Original Research
1989
Multiresolution Analysis in Non-Homogeneous Media
Coifman R. Multiresolution Analysis in Non-Homogeneous Media. Inverse Problems And Theoretical Imaging 1989, 259-262. DOI: 10.1007/978-3-642-97177-8_25.Peer-Reviewed Original ResearchMultiresolution analysis in non-homogeneous media
Coifman R. Multiresolution analysis in non-homogeneous media. 1989, 107. DOI: 10.1109/mdsp.1989.97059.Peer-Reviewed Original ResearchPartial differential operatorsNon-homogeneous mediaDifferential operatorsVariable coefficientsMultiresolution analysisNumerical algorithmInvariant settingImage processing contextNonhomogeneous mediaEdge detection problemDetection problemVariable geometryProcessing contextTime-frequency analysisOperatorsWavelet analysisGeometryFrequency analysisAlgorithmSpaceSummary formProblemWavelets