2023
Robust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Stochastic Trajectories
Domingues T, Coifman R, Haji-Akbari A. Robust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Stochastic Trajectories. The Journal Of Physical Chemistry B 2023, 127: 5273-5287. PMID: 37261948, DOI: 10.1021/acs.jpcb.3c00670.Peer-Reviewed Original ResearchTime discretizationStochastic trajectoriesMechanical observablesDiffusivity tensorAnisotropic diffusivity tensorPointwise estimatesRigorous generalizationRobust estimationCovariance estimatorDifferent functional formsLocal covarianceKernel-based approachEstimatorFunctional estimatesDiscretizationFunctional formOrthogonal functionsBulk systemKernel functionConfined systemSuch methodsObservablesTensorTransport propertiesCovariance-based estimator
1993
The fast multipole method for the wave equation: a pedestrian prescription
Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas And Propagation Magazine 1993, 35: 7-12. DOI: 10.1109/74.250128.Peer-Reviewed Original ResearchWavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations
Alpert B, Beylkin G, Coifman R, Rokhlin V. Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations. SIAM Journal On Scientific Computing 1993, 14: 159-184. DOI: 10.1137/0914010.Peer-Reviewed Original ResearchIntegral equationsSecond kind integral equationsKind integral equationsWavelet-like basisVector space basisIntegral operatorsNumerical solutionNumber of pointsFinite numberFast solutionSparse matricesNumerical resultsDiscretizationEquationsOperatorsSparse representationSingularitySolutionGeneralization
1990
Wavelets for the Fast Solution of Second-Kind Integral Equations
Alpert B, Beylkin G, Coifman R, Rokhlin V. Wavelets for the Fast Solution of Second-Kind Integral Equations. 1990 DOI: 10.21236/ada233650.Peer-Reviewed Original ResearchIntegral equationsSecond kind integral equationsKind integral equationsNon-oscillatory kernelsVector space basisIntegral operatorsNumerical solutionNumber of pointsFinite numberFast solutionSparse matricesNumerical resultsDiscretizationEquationsOperatorsSparse representationSingularitySolutionGeneralizationKernel