2024
Recurrence solution of monomer-polymer models on two-dimensional rectangular lattices
Kong Y. Recurrence solution of monomer-polymer models on two-dimensional rectangular lattices. Physical Review E 2024, 110: 054135. DOI: 10.1103/physreve.110.054135.Peer-Reviewed Original ResearchTwo-dimensional rectangular latticeRecurrence relationsRectangular latticeMonomer-dimer problemPlanar latticesRecurrent solutionsLong standing problemLattice sitesAdjacent lattice sitesLatticeProblemComputational complexitySolutionRelationsEnumerationPolymer coverUnoccupied lattice sitesRigid polymersMonomer-polymerSolution of long-standing problemsPolymerPolymer length
2006
Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density
Kong Y. Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density. Physical Review E 2006, 74: 061102. PMID: 17280033, DOI: 10.1103/physreve.74.061102.Peer-Reviewed Original ResearchLogarithmic correction termMonomer-dimer modelTwo-dimensional rectangular latticeCorrection termLattice widthLattice stripsFinite-size correctionsExact computational methodsRectangular latticeTwo-dimensional latticeAsymptotic theoryAccurate free energiesInfinite latticeAsymptotic expressionsLarge latticesSeries expansionFinite widthFree energyCorrect digitsLattice sitesFunctional formLatticeComputational methodsDecimal digitsDensity rhoPacking dimers on (2p+1)×(2q+1) lattices
Kong Y. Packing dimers on (2p+1)×(2q+1) lattices. Physical Review E 2006, 73: 016106. PMID: 16486215, DOI: 10.1103/physreve.73.016106.Peer-Reviewed Original ResearchSquare latticeNumber-theoretical propertiesLogarithmic termsMonomer-dimer problemFinite-size correctionsStatistical physics modelsNumber theoryExact solutionLattice stripsN latticePhysics modelsSize correctionsWidth NConfiguration numberLatticeComputational methodsFree energySingle vacancyUnexplored connectionsDistinct behaviorsTheoryTermsProblemSolutionEnergy
1999
General recurrence theory of ligand binding on a three-dimensional lattice
Kong Y. General recurrence theory of ligand binding on a three-dimensional lattice. The Journal Of Chemical Physics 1999, 111: 4790-4799. DOI: 10.1063/1.479242.Peer-Reviewed Original ResearchTransfer matrix MLinear latticeMatrix MCircular latticePartition functionRecurrence relationsThree-dimensional lattice modelThree-dimensional latticeStatistical mechanicsLinear systemsSecular equationRecurrence theoryTransfer matrixLattice modelGeneral theorySimple geometryPeriodical boundary conditionsBoundary conditionsMatrix sizeEigenvaluesLatticeSimple structureUnique binding configurationsTwo-dimensional layersTheory
1996
Theory of multivalent binding in one and two-dimensional lattices
Di E, Kong Y. Theory of multivalent binding in one and two-dimensional lattices. Biophysical Chemistry 1996, 61: 107-124. PMID: 17023370, DOI: 10.1016/s0301-4622(96)02178-3.Peer-Reviewed Original ResearchTwo-dimensional torusPartition functionLinear latticeOne-dimensional linear latticeExact analytical solutionTwo-dimensional latticeCases of interestGeometry of interactionLimit NRecursion relationsAnalytical solutionCombinatorial argumentsDimensional embeddingSpecial caseAnalytical expressionsSimple transformationTorusLatticeLength nExperimental measurementsGeometryTheorySite-specific propertiesGeneral conditionN sites