2019
Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells.
Eubanks HB, Lavoie EG, Goree J, Kamykowski JA, Gokden N, Fausther M, Dranoff JA. Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells. Gene Expression 2019, 20: 25-37. PMID: 31757226, PMCID: PMC7284106, DOI: 10.3727/105221619x15742818049365.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActin Depolymerizing FactorsActinsAnimalsCarbon TetrachlorideCell LineCell MovementCell SeparationGene Knockdown TechniquesHepatic Stellate CellsHumansLiverLiver CirrhosisMiceMyofibroblastsQb-SNARE ProteinsQc-SNARE ProteinsRho-Associated KinasesRNA InterferenceRNA, Small InterferingSignal TransductionStress FibersWound HealingConceptsSNAP-23T-SNARE proteinsSpecific SNARE proteinsMyofibroblastic hepatic stellate cellsSNARE proteinsActin cytoskeletonActin dynamicsHepatic stellate cellsCytoskeletal reorganizationCell movementPlasma membraneHomologous proteinsExtracellular environmentMicrofilament organizationSNAP-25HSC phenotypeReceptor proteinProteinStellate cellsQuiescent hepatic stellate cellsPhenotypeCellsCritical effector cellsCytoskeletonVivo
2017
Extracellular vesicles carry microRNA‐195 to intrahepatic cholangiocarcinoma and improve survival in a rat model
Li L, Piontek K, Ishida M, Fausther M, Dranoff JA, Fu R, Mezey E, Gould SJ, Fordjour FK, Meltzer SJ, Sirica AE, Selaru FM. Extracellular vesicles carry microRNA‐195 to intrahepatic cholangiocarcinoma and improve survival in a rat model. Hepatology 2017, 65: 501-514. PMID: 27474881, PMCID: PMC5258762, DOI: 10.1002/hep.28735.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBile Duct NeoplasmsCarcinogenesisCell MovementCholangiocarcinomaDisease Models, AnimalDown-RegulationExtracellular VesiclesFibroblastsHumansImmunohistochemistryMaleMicroRNAsRandom AllocationRatsRats, Inbred F344Real-Time Polymerase Chain ReactionSensitivity and SpecificitySurvival RateTransfectionTumor Cells, CulturedTumor MicroenvironmentConceptsExtracellular vesiclesMiR speciesCancer cellsCancer-associated fibroblastsFibroblasts-derived extracellular vesiclesMiR-195Rat modelMicroRNA speciesQuantitative reverse transcription polymerase chain reactionCCA cellsSpeciesCancer developmentCancer fibroblastsHuman cholangiocarcinomaMiR contentReverse transcription-polymerase chain reactionNovel therapeuticsFibroblastsCentral roleSize of cancerVesiclesCellsPolymerase chain reactionMicroRNA-195Cancer microenvironment
2009
Portal fibroblasts: Underappreciated mediators of biliary fibrosis
Dranoff JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology 2009, 51: 1438-1444. PMID: 20209607, PMCID: PMC2850946, DOI: 10.1002/hep.23405.Peer-Reviewed Original ResearchConceptsPortal fibroblastsNonparenchymal cell populationBiliary fibrosisStellate cellsCell populationsHepatic stellate cellsFibrogenic myofibroblastsChronic injuryBiliary epitheliumDuct epitheliumFibrotic liverUnderappreciated mediatorCollagen productionFurther studiesFibrosisLiverEpitheliumFibroblastsCellsFibrogenesisInjuryPopulationMyofibroblastsPathobiologyImportant role
2007
Transforming growth factor‐β and substrate stiffness regulate portal fibroblast activation in culture
Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor‐β and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 2007, 46: 1246-1256. PMID: 17625791, DOI: 10.1002/hep.21792.Peer-Reviewed Original ResearchConceptsHepatic stellate cellsPortal fibroblastsStellate cellsMyofibroblastic differentiationTGF-beta receptor kinase inhibitorGrowth factorAlpha-smooth muscle actinAlpha-smooth muscle actin expressionPlatelet-derived growth factorMuscle actin expressionReceptor kinase inhibitorBiliary fibrosisRat liver tissueFibroblast activationFibrogenic cellsMuscle actinLiver tissueMyofibroblastic phenotypeActin expressionFibroblast differentiationKinase inhibitorsDesminMyofibroblastsFibroblastsCellsMolecular basis for calcium signaling in hepatic stellate cells
Kruglov EA, Correa PR, Arora G, Yu J, Nathanson MH, Dranoff JA. Molecular basis for calcium signaling in hepatic stellate cells. AJP Gastrointestinal And Liver Physiology 2007, 292: g975-g982. PMID: 17204544, DOI: 10.1152/ajpgi.00401.2006.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAdenosine TriphosphateAnimalsCalcium SignalingCalreticulinCell NucleusCell ShapeCell Surface ExtensionsCells, CulturedEndoplasmic ReticulumInositol 1,4,5-Trisphosphate ReceptorsLiverLiver CirrhosisMaleMicroscopy, ConfocalMicroscopy, VideoRatsRats, Sprague-DawleyReceptors, Purinergic P2RNA, MessengerTime FactorsConceptsHepatic stellate cellsCell extensionsLipid-storing cellsSubcellular organizationLiver fibrosisMolecular basisStellate cellsSubcellular signalingTrisphosphate receptorChronic liver failureProgressive liver fibrosisSufficient machineryExtracellular ATPMyofibroblastic transdifferentiationOrgan fibrosisLiver failureP2Y receptorsHealthy liverATPLocal controlCellsCritical stepLocal applicationImportant mediatorFibrosis
2005
The Anti-apoptotic Protein Mcl-1 Inhibits Mitochondrial Ca2+ Signals*
Minagawa N, Kruglov EA, Dranoff JA, Robert ME, Gores GJ, Nathanson MH. The Anti-apoptotic Protein Mcl-1 Inhibits Mitochondrial Ca2+ Signals*. Journal Of Biological Chemistry 2005, 280: 33637-33644. PMID: 16027162, DOI: 10.1074/jbc.m503210200.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAniline CompoundsAntibodies, MonoclonalApoptosisBile Duct NeoplasmsCalcium SignalingCarbocyaninesCell LineCell Line, TumorCell NucleusFluorescent Antibody Technique, IndirectFluorescent DyesHeterocyclic Compounds, 3-RingHumansHydrazinesImmunohistochemistryMicroscopy, ConfocalMitochondriaModels, BiologicalMyeloid Cell Leukemia Sequence 1 ProteinNeoplasm ProteinsProto-Oncogene Proteins c-bcl-2Signal TransductionTissue DistributionXanthenesConceptsAnti-apoptotic proteinsMcl-1Mitochondrial Ca2Mcl-1 expressionApoptotic stimuliEndoplasmic reticulum Ca2Trisphosphate receptorCell growthNovel mechanismApoptosisMechanism of actionProteinExpressionDevelopment of neoplasiaCa2Reticulum Ca2CellsMitochondriaInositolRegulationPathwayMechanismSignalsReceptorsRegeneration
2004
Autocrine release of TGF‐β by portal fibroblasts regulates cell growth
Wells RG, Kruglov E, Dranoff JA. Autocrine release of TGF‐β by portal fibroblasts regulates cell growth. FEBS Letters 2004, 559: 107-110. PMID: 14960316, DOI: 10.1016/s0014-5793(04)00037-7.Peer-Reviewed Original ResearchConceptsHepatic stellate cellsPortal fibroblastsBiliary fibrosisGrowth factorTGF-beta2Activated hepatic stellate cellsDerived growth factorTGF-beta receptorsFibroblast growth factorPF proliferationMyofibroblast populationStellate cellsFibrogenic cellsKey growth factorsAutocrine releaseFibrosisCell growthFibroblastsCellsPopulationFactorsTGFLiverReceptors
1999
Short‐term regulation of bile acid uptake by microfilament‐dependent translocation of rat ntcp to the plasma membrane
Dranoff J, McClure M, Burgstahler A, Denson L, Crawford A, Crawford J, Karpen S, Nathanson M. Short‐term regulation of bile acid uptake by microfilament‐dependent translocation of rat ntcp to the plasma membrane. Hepatology 1999, 30: 223-229. PMID: 10385660, DOI: 10.1002/hep.510300136.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsBase SequenceBile Acids and SaltsBiological TransportCarcinoma, HepatocellularCarrier ProteinsCell MembraneCyclic AMPCytochalasin DGreen Fluorescent ProteinsHumansKineticsLiver NeoplasmsLuminescent ProteinsMembrane Transport ProteinsModels, MolecularMolecular Sequence DataOpen Reading FramesOrganic Anion Transporters, Sodium-DependentProtein Structure, SecondaryRatsRecombinant Fusion ProteinsSymportersTaurocholic AcidTransfectionTritiumTumor Cells, CulturedConceptsPlasma membraneGreen fluorescence proteinGFP fluorescenceNTCP-GFPPlasma membrane fluorescenceMembrane fluorescenceRat NtcpInhibitor of microfilamentsSecond messenger adenosinePrimary transporterFluorescence proteinNocodazole removalCytochalasin DTransporter activityShort-term regulationAcid uptakeConfocal video microscopyMicrotubule inhibitorsHepG2 cellsTaurocholate cotransportMembraneProteinMicrofilamentsCellsVideo microscopyExpression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells.
Leite MF, Dranoff JA, Gao L, Nathanson MH. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochemical Journal 1999, 337 ( Pt 2): 305-9. PMID: 9882629, PMCID: PMC1219966, DOI: 10.1042/0264-6021:3370305.Peer-Reviewed Original ResearchConceptsPancreatic acinar cellsNon-excitable cell typesCell typesCell types resultsAcinar cellsNon-excitable cellsRyanodine receptorSubcellular localizationPolarized epitheliumReverse transcription-PCRRat pancreatic acinar cellsTrisphosphate receptorCo-ordinated releaseType 2 RyRExcitable cellsRelease pathwayTranscription-PCRPrincipal Ca2Release channelApical regionCytosolic Ca2CellsFundamental roleRyRsPropagation of Ca2Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells
LEITE M, DRANOFF J, Ling G, NATHANSON M. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochemical Journal 1999, 337: 305-309. DOI: 10.1042/bj3370305.Peer-Reviewed Original ResearchPancreatic acinar cellsNon-excitable cell typesCell typesCell types resultsAcinar cellsNon-excitable cellsRyanodine receptorSubcellular localizationPolarized epitheliumReverse transcription-PCRRat pancreatic acinar cellsTrisphosphate receptorCo-ordinated releaseType 2 RyRExcitable cellsRelease pathwayTranscription-PCRPrincipal Ca2Release channelApical regionCytosolic Ca2CellsFundamental roleRyRsPropagation of Ca2