2024
Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement
Zheng N, Keloth V, You K, Kats D, Li D, Deshpande O, Sachar H, Xu H, Laine L, Shung D. Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement. Gastroenterology 2024 PMID: 39304088, DOI: 10.1053/j.gastro.2024.09.014.Peer-Reviewed Original ResearchElectronic health recordsOvert gastrointestinal bleedingGastrointestinal bleedingRecurrent bleedingMachine learning modelsHealth recordsClinically relevant applicationsNursing notesLanguage modelAcute gastrointestinal bleedingQuality improvementLearning modelsDetection of gastrointestinal bleedingReimbursementIdentification of clinical conditionsSeparate hospitalsQuality measuresHospitalBleedingClinical conditionsPatient managementEarly identificationPatientsReimbursement codesCoding algorithm
2021
Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit
Shung D, Huang J, Castro E, Tay JK, Simonov M, Laine L, Batra R, Krishnaswamy S. Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit. Scientific Reports 2021, 11: 8827. PMID: 33893364, PMCID: PMC8065139, DOI: 10.1038/s41598-021-88226-3.Peer-Reviewed Original ResearchConceptsAcute gastrointestinal bleedingRed blood cell transfusionBlood cell transfusionGastrointestinal bleedingHigh-risk patientsCell transfusionRed blood cellsPatient cohortIntensive Care III (MIMIC-III) critical care databaseIntensive care unit staySevere acute gastrointestinal bleedingPacked red blood cellsBlood cellsCommon gastrointestinal causesLaboratory test featuresTime-updated dataIntensive care unitValidation patient cohortCritical care databaseLarge urban hospitalMedical Information MartInternal validation setGastrointestinal causesUnit stayCare unitAdvancing care for acute gastrointestinal bleeding using artificial intelligence
Shung DL. Advancing care for acute gastrointestinal bleeding using artificial intelligence. Journal Of Gastroenterology And Hepatology 2021, 36: 273-278. PMID: 33624892, DOI: 10.1111/jgh.15372.Peer-Reviewed Original ResearchConceptsElectronic health recordsAcute gastrointestinal bleedingIntegration of machineHealth recordsNeural network modelGastrointestinal bleedingRisk prediction toolsNeural network-based analysisArtificial intelligenceMachine learningDecision supportRisk patientsNetwork modelReal timeMachineAlgorithmPrediction toolsClinical risk scoreLower gastrointestinal bleedingLow-risk patientsHigh-risk patientsProspective clinical trialsTriage of patientsClinician risk assessmentDelivery of careEarly identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules
Shung D, Tsay C, Laine L, Chang D, Li F, Thomas P, Partridge C, Simonov M, Hsiao A, Tay JK, Taylor A. Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules. Journal Of Gastroenterology And Hepatology 2021, 36: 1590-1597. PMID: 33105045, DOI: 10.1111/jgh.15313.Peer-Reviewed Original ResearchConceptsNatural language processingElectronic health recordsLanguage processingNLP algorithmSystematized NomenclatureReal timeAcute gastrointestinal bleedingBidirectional Encoder RepresentationsDecision rulesEHR-based phenotyping algorithmsGastrointestinal bleedingRisk stratification scoresEncoder RepresentationsData elementsPhenotyping algorithmStratification scoresHealth recordsAlgorithmPhenotyping of patientsEmergency department patientsTime of presentationRisk stratification modelED reviewDeploymentExternal validation
2019
Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review
Shung D, Simonov M, Gentry M, Au B, Laine L. Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review. Digestive Diseases And Sciences 2019, 64: 2078-2087. PMID: 31055722, DOI: 10.1007/s10620-019-05645-z.Peer-Reviewed Original ResearchConceptsClinical risk scoreUpper gastrointestinal bleedingGastrointestinal bleedingOutcomes of mortalityRisk scoreSystematic reviewOvert gastrointestinal bleedingAcute gastrointestinal bleedingPrognosis Studies toolRisk of biasFull-text studiesCurrent risk assessment toolsRisk assessment toolHospital stayHemostatic interventionRisk stratificationInclusion criteriaPrognostic performanceHigh riskIndependent reviewersConference abstractsLower riskMedian AUCPatientsMortality