2011
Laminar shear, but not orbital shear, has a synergistic effect with thrombin stimulation on tissue factor expression in human umbilical vein endothelial cells
Rochier A, Nixon A, Yamashita N, Abe R, Abe R, Madri JA, Sumpio BE. Laminar shear, but not orbital shear, has a synergistic effect with thrombin stimulation on tissue factor expression in human umbilical vein endothelial cells. Journal Of Vascular Surgery 2011, 54: 480-488. PMID: 21367569, DOI: 10.1016/j.jvs.2011.01.002.Peer-Reviewed Original ResearchAnalysis of VarianceBlotting, WesternCell Culture TechniquesCells, CulturedEndothelial CellsEnzyme ActivationHumansMechanotransduction, CellularMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3P38 Mitogen-Activated Protein KinasesPhosphorylationProtein Kinase InhibitorsRNA, MessengerStress, MechanicalThrombinThromboplastinTime FactorsUp-Regulation
2010
Thrombospondin 1, Fibronectin, and Vitronectin are Differentially Dependent Upon RAS, ERK1/2, and p38 for Induction of Vascular Smooth Muscle Cell Chemotaxis
Willis AI, Sadowitz B, Fuse S, Maier KG, Lee TS, Wang XJ, Tuszynski GP, Sumpio BE, Gahtan V. Thrombospondin 1, Fibronectin, and Vitronectin are Differentially Dependent Upon RAS, ERK1/2, and p38 for Induction of Vascular Smooth Muscle Cell Chemotaxis. Vascular And Endovascular Surgery 2010, 45: 55-62. PMID: 21193465, DOI: 10.1177/1538574410387677.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsCattleCells, CulturedChemotaxisFibronectinsHumansMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Muscle, Smooth, VascularMyocytes, Smooth MuscleP38 Mitogen-Activated Protein KinasesProtein Kinase InhibitorsRas ProteinsThrombospondin 1TransfectionVitronectinConceptsVascular smooth muscle cellsThrombospondin-1Smooth muscle cell chemotaxisFarnesyl protein transferase inhibitorSignal transduction pathwaysProtein transferase inhibitorsVascular smooth muscle cell chemotaxisBovine vascular smooth muscle cellsTSP-1Ras N17Transduction pathwaysSecond messenger systemsP38Smooth muscle cellsERK1/2VSMC migrationTransferase inhibitorsPD098059Cell chemotaxisSB202190Muscle cellsMessenger systemsVitronectinRAChemotaxisRetrospective evaluation of clinical outcomes in subjects with split‐thickness skin graft: comparing V.A.C.® therapy and conventional therapy in foot and ankle reconstructive surgeries
Blume PA, Key JJ, Thakor P, Thakor S, Sumpio B. Retrospective evaluation of clinical outcomes in subjects with split‐thickness skin graft: comparing V.A.C.® therapy and conventional therapy in foot and ankle reconstructive surgeries. International Wound Journal 2010, 7: 480-487. PMID: 20825510, PMCID: PMC7951281, DOI: 10.1111/j.1742-481x.2010.00728.x.Peer-Reviewed Original ResearchConceptsAnkle reconstructive surgeryConventional therapyGraft survivalNPWT/ROCFClinical outcomesReconstructive surgerySplit-thickness skin graft survivalSplit-thickness skin graftNegative pressure wound therapyDuration of graftImproved graft survivalOverall graft takeVacuum-Assisted TherapySkin graft survivalPressure wound therapyGraft failureRetrospective reviewRetrospective studyOutpatient treatmentGraft takeSkin graftsCT groupWound therapyRetrospective evaluationLevel I
2008
Synergistic Effect of Cool/Thaw Cycles on Vascular Cells in an In Vitro Model of Cryoplasty
Yiu WK, Cheng SW, Sumpio BE. Synergistic Effect of Cool/Thaw Cycles on Vascular Cells in an In Vitro Model of Cryoplasty. Journal Of Vascular And Interventional Radiology 2008, 19: 925-930. PMID: 18503909, DOI: 10.1016/j.jvir.2008.02.007.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsAkt activationEndothelial cellsApoptotic smooth muscle cellsActivation of AktBovine aortic smooth muscle cellsAortic smooth muscle cellsSurvival responseDeoxynucleotidyl transferase-mediated dUTP nick end labelingFetal bovine serumTerminal deoxynucleotidyl transferase-mediated dUTP nick end labelingTransferase-mediated dUTP nick end labelingImmunoblot analysisDUTP nick end labelingHigher apoptotic rateVascular cells
2006
Vascular Smooth Muscle Cell Apoptosis Induced by “Supercooling” and Rewarming
Yiu WK, Cheng SW, Sumpio BE. Vascular Smooth Muscle Cell Apoptosis Induced by “Supercooling” and Rewarming. Journal Of Vascular And Interventional Radiology 2006, 17: 1971-1977. PMID: 17185696, DOI: 10.1097/01.rvi.0000244868.65867.fb.Peer-Reviewed Original Research
2002
Photochemotherapy of vascular cells with 8‐methoxypsoralen and visible light: differential effects on endothelial and smooth muscle cells
Lee DM, Gasparro FP, Wang XJ, Kopec C, DeLeo K, Sumpio BE. Photochemotherapy of vascular cells with 8‐methoxypsoralen and visible light: differential effects on endothelial and smooth muscle cells. Photodermatology Photoimmunology & Photomedicine 2002, 18: 244-252. PMID: 12390666, DOI: 10.1034/j.1600-0781.2002.02770.x.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsEndothelial cellsPercutaneous transluminal coronary angioplastyMuscle cellsTransluminal coronary angioplastyLong-term efficacyAortic smooth muscle cellsBovine aortic smooth muscle cellsDose-dependent fashionReversible inhibitionCoronary angioplastyIntermediate doseLow doseHigh doseSMC proliferationCell countVascular cellsDoseProliferation of ECsEC proliferationDifferential effectsProliferationCellular migrationPresent studySignificant effect