2010
Thrombospondin 1, Fibronectin, and Vitronectin are Differentially Dependent Upon RAS, ERK1/2, and p38 for Induction of Vascular Smooth Muscle Cell Chemotaxis
Willis AI, Sadowitz B, Fuse S, Maier KG, Lee TS, Wang XJ, Tuszynski GP, Sumpio BE, Gahtan V. Thrombospondin 1, Fibronectin, and Vitronectin are Differentially Dependent Upon RAS, ERK1/2, and p38 for Induction of Vascular Smooth Muscle Cell Chemotaxis. Vascular And Endovascular Surgery 2010, 45: 55-62. PMID: 21193465, DOI: 10.1177/1538574410387677.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsCattleCells, CulturedChemotaxisFibronectinsHumansMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Muscle, Smooth, VascularMyocytes, Smooth MuscleP38 Mitogen-Activated Protein KinasesProtein Kinase InhibitorsRas ProteinsThrombospondin 1TransfectionVitronectinConceptsVascular smooth muscle cellsThrombospondin-1Smooth muscle cell chemotaxisFarnesyl protein transferase inhibitorSignal transduction pathwaysProtein transferase inhibitorsVascular smooth muscle cell chemotaxisBovine vascular smooth muscle cellsTSP-1Ras N17Transduction pathwaysSecond messenger systemsP38Smooth muscle cellsERK1/2VSMC migrationTransferase inhibitorsPD098059Cell chemotaxisSB202190Muscle cellsMessenger systemsVitronectinRAChemotaxis
2005
Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1α
Dardik A, Yamashita A, Aziz F, Asada H, Sumpio BE. Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1α. Journal Of Vascular Surgery 2005, 41: 321-331. PMID: 15768016, DOI: 10.1016/j.jvs.2004.11.016.Peer-Reviewed Original ResearchConceptsSignal transduction pathwaysPlatelet-derived growth factorSMC chemotaxisCell signal transduction pathwaysMitogen-activated protein kinase pathwaySmooth muscle cell chemotaxisERK1/2 phosphorylationPDGF-BBExtracellular signal-regulated protein kinase 1/2Pathway inhibitor PD98059Protein kinase pathwayEndothelial cellsERK1/2 signal transduction pathwayProtein kinase 1/2Vascular smooth muscle cell migrationBovine aortic endothelial cellsKinase pathwayInhibitor PD98059Smooth muscle cell migrationHemodynamic forcesKinase 1/2Platelet-derived growthMuscle cell migrationWestern blot analysisTarget pathways
2003
Oscillatory shear stress increases smooth muscle cell proliferation and akt phosphorylation
Haga M, Yamashita A, Paszkowiak J, Sumpio BE, Dardik A. Oscillatory shear stress increases smooth muscle cell proliferation and akt phosphorylation. Journal Of Vascular Surgery 2003, 37: 1277-1284. PMID: 12764276, DOI: 10.1016/s0741-5214(03)00329-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell Physiological PhenomenaDisease Models, AnimalHemodynamicsIn Vitro TechniquesMyocytes, Smooth MuscleOscillometryPhosphatidylinositol 3-KinasesPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktShear StrengthSignal TransductionStress, PhysiologicalVascular DiseasesConceptsSignal transduction pathwaysAkt phosphorylationTransduction pathwaysPI3K-Akt signal transduction pathwaySmooth muscle cell proliferationMuscle cell proliferationCell proliferationControl cellsOscillatory shear stressMaximal phosphorylationPI3K inhibitorsCell numberSurvival pathwaysAkt activationBovine aortic SMCSMC survivalInhibitor LY294002Akt pathwayPhosphorylationWestern blot techniqueControl survivalDNA synthesisK inhibitorsAortic SMCsPathway
2001
The Integrin-Mediated Cyclic Strain-Induced Signaling Pathway in Vascular Endothelial Cells
Frangos S, Knox R, Yano Y, Chen E, Di Luozzo G, Chen A, Sumpio B. The Integrin-Mediated Cyclic Strain-Induced Signaling Pathway in Vascular Endothelial Cells. Endothelium 2001, 8: 1-10. PMID: 11409847, DOI: 10.3109/10623320109063153.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinase (MAPK) familyCytoplasmic protein kinaseProtein kinase familySignal transduction pathwaysFocal adhesion kinaseExtracellular matrix receptorsProcess of phosphorylationEndothelial cellsKinase familySignal transductionTranscription factorsAdhesion kinaseProtein kinaseTransduction pathwaysMatrix receptorsGene expressionTyrosine residuesSignaling pathwaysCyclic circumferential strainVascular endothelial cellsPathwayKinaseIntegrinsHemodynamic forcesVasculature results
1999
Thrombospondin-1 induces activation of focal adhesion kinase in vascular smooth muscle cells
Gahtan V, Wang X, Ikeda M, Willis A, Tuszynski G, Sumpio B. Thrombospondin-1 induces activation of focal adhesion kinase in vascular smooth muscle cells. Journal Of Vascular Surgery 1999, 29: 1031-1036. PMID: 10359937, DOI: 10.1016/s0741-5214(99)70244-2.Peer-Reviewed Original ResearchConceptsTyrosine phosphorylationAntiphosphotyrosine immunoblottingThrombospondin-1TSP-1-induced VSMC migrationFocal adhesion kinase (FAK) proteinSignal transduction pathwaysFocal adhesion kinaseFocal adhesion plaquesVSMC migrationExtracellular matrix proteinsPlatelet-derived growth factorCrude cell lysatesMolecular weight 68Adhesion kinaseTransduction pathwaysKinase proteinAdhesion plaquesVascular smooth muscle cell proliferationVascular smooth muscle cellsMatrix proteinsCell lysatesPhosphorylationSmooth muscle cell proliferationFAK antibodyProtein bandsPhosphatidylinositol-3 Kinase Dependent MAP Kinase Activation via p21ras in Endothelial Cells Exposed to Cyclic Strain
Ikeda M, Kito H, Sumpio B. Phosphatidylinositol-3 Kinase Dependent MAP Kinase Activation via p21ras in Endothelial Cells Exposed to Cyclic Strain. Biochemical And Biophysical Research Communications 1999, 257: 668-671. PMID: 10208841, DOI: 10.1006/bbrc.1999.0532.Peer-Reviewed Original ResearchMeSH KeywordsAndrostadienesAnimalsAortaCalcium-Calmodulin-Dependent Protein KinasesCattleCells, CulturedChromonesEndothelium, VascularEnzyme ActivationGuanosine TriphosphateHemodynamicsMorpholinesOncogene Protein p21(ras)Phosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphorylationSignal TransductionStress, MechanicalTime FactorsWortmanninConceptsERK1/2 activationPhosphatidylinositol-3 kinase inhibitorMAP kinase activationExtracellular signal-regulated protein kinases 1Endothelial cellsMechanical stretchKinase inhibitorsERK1/2 phosphorylationEffect of wortmanninPossible involvementHemodynamic forcesProtein kinase 1ActivationKinase 1Upstream pathwaysRapid activationKinase activationSignal transduction pathwaysP21ras activationLY294002ERK1 activationERK2 activation
1998
Molecular Basis for Tissue Expansion: Clinical Implications for the Surgeon
Takei T, Mills I, Arai K, Sumpio B. Molecular Basis for Tissue Expansion: Clinical Implications for the Surgeon. Plastic & Reconstructive Surgery 1998, 102: 247-258. PMID: 9655439, DOI: 10.1097/00006534-199807000-00044.Peer-Reviewed Original ResearchConceptsProtein kinase CTransduction pathwaysProtein kinase familySignal transduction pathwaysAlters cell morphologyIsoform-specific manner
1994
Signal transduction pathways in vascular cells exposed to cyclic strain
Sumpio B, Du W, Cohen C, Evans L, Isales C, Rosales O, Mills I. Signal transduction pathways in vascular cells exposed to cyclic strain. 1994, 3-22. DOI: 10.1017/cbo9780511629068.001.Peer-Reviewed Original Research
1993
Phospholipase C: A Putative Mechanotransducer for Endothelial Cell Response to Acute Hemodynamic Changes
Brophy CM, Mills I, Rosales O, Isales C, Sumpio BE. Phospholipase C: A Putative Mechanotransducer for Endothelial Cell Response to Acute Hemodynamic Changes. Biochemical And Biophysical Research Communications 1993, 190: 576-581. PMID: 8427600, DOI: 10.1006/bbrc.1993.1087.Peer-Reviewed Original ResearchConceptsEndothelial cellsAcute hemodynamic changesPhospholipase C activationHemodynamic changesProduction of inositolAcute decreaseAcute increaseIP3 generationEndothelial cell responsesCell responsesIP3 productionPutative mechanotransducersTransient increaseSpecific signal transduction pathwaysOngoing studiesCardiac cycleC activationSignal transduction pathwaysTransduction pathways
1991
Hemodynamic forces and the biology of the endothelium: signal transduction pathways in endothelial cells subjected to physical forces in vitro
Sumpio B. Hemodynamic forces and the biology of the endothelium: signal transduction pathways in endothelial cells subjected to physical forces in vitro. Journal Of Vascular Surgery 1991, 13: 744-746. PMID: 2027223, DOI: 10.1016/0741-5214(91)90372-2.Peer-Reviewed Original ResearchConceptsSignal transduction pathwaysTransduction pathwaysEndothelial cellsHemodynamic forcesPhysical forcesBiologyPathwayCells