2020
Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex
Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, Crair MC, Huang ZJ. Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex. Neuron 2020, 109: 502-515.e7. PMID: 33290732, PMCID: PMC7943176, DOI: 10.1016/j.neuron.2020.11.004.Peer-Reviewed Original ResearchConceptsPrimary visual cortexVisual cortexTranscallosal pathwayVisual fieldDeficient binocular visionGABAergic chandelier cellsBinocular circuitsBinocular visionChandelier cellsRetinal activityTranscallosal projectionsGeniculocortical inputCallosal activityCenter visual fieldBinocular regionCortexMassive apoptosisDevelopmental assemblyCritical periodV1IpsiBlockadePathwayBinocularityMice
2018
Homeostatic Control of Spontaneous Activity in the Developing Auditory System
Babola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, Crair MC, Bergles DE. Homeostatic Control of Spontaneous Activity in the Developing Auditory System. Neuron 2018, 99: 511-524.e5. PMID: 30077356, PMCID: PMC6100752, DOI: 10.1016/j.neuron.2018.07.004.Peer-Reviewed Original ResearchConceptsSpiral ganglion neuronsSpontaneous activityAuditory systemDirect neuronal excitationGlutamate releaseEnhanced excitabilityGanglion neuronsUnanesthetized miceSynaptic excitationHearing onsetNeuronal excitationTherapeutic approachesMouse modelSpontaneous burstsCongenital formSynchronized activityHair cellsHomeostatic mechanismsNeuronsHomeostatic controlSimilar frequencyCircuit developmentMiceInfluence developmentDeafness
2015
A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa
Guo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nature Communications 2015, 6: 8005. PMID: 26272629, PMCID: PMC4538705, DOI: 10.1038/ncomms9005.Peer-Reviewed Original ResearchConceptsRetinitis pigmentosaVisual functionRd1 miceCone photoreceptor deathMultiple cell death pathwaysRd1 mutationPhotoreceptor protectionPhotoreceptor deathEffective treatmentAnimal modelsPhotoreceptor degenerationRod deathCone photoreceptorsRod survivalInvaluable animal modelHDAC4 proteinMicePigmentosaCell death pathwaysRod photoreceptorsProtein therapyTherapyHDAC4DeathSurvivalSpatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency
Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Developmental Neurobiology 2015, 75: 621-640. PMID: 25787992, PMCID: PMC4697738, DOI: 10.1002/dneu.22288.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityEye-specific segregationRetinal activityRetinal ganglion cell projectionsEye-specific projectionsGanglion cell projectionsPrecise neural connectionsRetinotopic map refinementSpontaneous retinal wavesNicotinic acetylcholine receptorsInstructive roleEye of originRetinal wavesRetinotopic refinementSpontaneous activityRetinotopic mapAcetylcholine receptorsDevelopment of retinotopyBrain wiringPermissive roleMutant miceNeural connectionsOverall activity levelsSpontaneous wavesMice
2013
Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus
Furman M, Xu HP, Crair MC. Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus. Journal Of Neurophysiology 2013, 110: 1441-1454. PMID: 23741047, PMCID: PMC3763158, DOI: 10.1152/jn.01066.2012.Peer-Reviewed Original ResearchConceptsSuperior colliculusRetinal wavesRetinal inputBrain slice preparationActivity-dependent competitionWT miceRetinofugal axonsSlice preparationSC neuronsTransgenic miceBrain regionsSynaptic strengthSynaptic developmentSynapse developmentMiceNeuronsEye openingFunctional developmentSynapsesColliculusMolecular mechanismsSpecific roleInstructive roleMorphological developmentAxons
2012
Role of adenylate cyclase 1 in retinofugal map development
Dhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu H, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development. The Journal Of Comparative Neurology 2012, 520: 1562-1583. PMID: 22102330, PMCID: PMC3563095, DOI: 10.1002/cne.23000.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusDorsal lateral geniculate nucleusAdenylate cyclase 1Superior colliculusRetinal wavesRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesSecond postnatal weekActivity-dependent processesCyclase 1Production of cAMPRGC axonsGeniculate nucleusPostnatal weekMammalian visual systemDevelopment of retinotopySomatotopic mapMutant miceSensory peripheryMiceConditional deletionTermination zonesDependent manner
2011
Visual map development depends on the temporal pattern of binocular activity in mice
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornBrain MappingCalciumChannelrhodopsinsCritical Period, PsychologicalFunctional LateralityIn Vitro TechniquesLightLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicNeuronal PlasticityPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiTime FactorsVision, BinocularVisual PathwaysConceptsDorsal lateral geniculate nucleusEye-specific segregationSpontaneous retinal wavesLateral geniculate nucleusPrimary visual cortexMouse visual systemBinocular activityRetinal wavesGeniculate nucleusCircuit refinementSuperior colliculusSpecific temporal featuresVisual cortexBursts of activityDefinitive evidenceVisual systemColliculusBinocularityCortexMiceActivityHow do barrels form in somatosensory cortex?
Li H, Crair MC. How do barrels form in somatosensory cortex? Annals Of The New York Academy Of Sciences 2011, 1225: 119-129. PMID: 21534999, PMCID: PMC4700879, DOI: 10.1111/j.1749-6632.2011.06024.x.Peer-Reviewed Original ResearchDevelopment of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice
Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice. Journal Of Neuroscience 2011, 31: 3384-3399. PMID: 21368050, PMCID: PMC3060716, DOI: 10.1523/jneurosci.4899-10.2011.Peer-Reviewed Original ResearchConceptsDorsal lateral geniculate nucleusRetinal ganglion cellsSuperior colliculusAxon arborsRetinotopic refinementEye-specific segregationReceptor mutant miceLateral geniculate nucleusActivity-dependent mechanismsNormal developmentWT miceRGC axonsRetinal wavesGanglion cellsGeniculate nucleusMutant miceRole of activityMiceSpecific cuesArborsSparse branchesSame ageLabeling techniqueMaturationDevelopmental period
2010
The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina
Xu HP, Chen H, Ding Q, Xie ZH, Chen L, Diao L, Wang P, Gan L, Crair MC, Tian N. The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina. Neuron 2010, 65: 503-515. PMID: 20188655, PMCID: PMC3037728, DOI: 10.1016/j.neuron.2010.01.035.Peer-Reviewed Original ResearchConceptsEye-specific segregationCentral nervous systemRetinal ganglion cellsDendritic motilitySynaptic activityActivity-dependent synapse formationPossible retinal originRGC axon projectionImmune proteinsImmune-deficient miceDendritic densityGanglion cellsClass I major histocompatibility complex genesRetinal originNervous systemSynapse formationAxon projectionsMHCI receptorNeural circuitsSynaptic wiringSelective defectMajor histocompatibility complex (MHC) genesMiceRetinaNormal development
2009
Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus
Chandrasekaran AR, Furuta Y, Crair MC. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus. The Journal Of Physiology 2009, 587: 953-963. PMID: 19153163, PMCID: PMC2673768, DOI: 10.1113/jphysiol.2008.160952.Peer-Reviewed Original ResearchConceptsSuperior colliculusMutant miceBone morphogenetic protein receptorRetinal ganglion cell axonsGuidance moleculesSpontaneous retinal wavesGanglion cell axonsSuperficial superior colliculusReceptive field propertiesRetinotopic receptive fieldsActivity-dependent factorsMore RGCsRetinocollicular projectionRetinal wavesEctopic projectionsVentral retinaCell axonsRetinotopic map formationAnatomical defectsAction potentialsActivity-dependent learning ruleSpontaneous wavesRetinaRGCsMice
2008
Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse
Plas DT, Dhande OS, Lopez JE, Murali D, Thaller C, Henkemeyer M, Furuta Y, Overbeek P, Crair MC. Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse. Journal Of Neuroscience 2008, 28: 7057-7067. PMID: 18614674, PMCID: PMC2667968, DOI: 10.1523/jneurosci.3598-06.2008.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusSuperior colliculusOptic tractRetinotopic map formationRetinal ganglion cell axonsBone morphogenetic proteinCentral brain targetsRetinocollicular map formationGanglion cell axonsMap formationWild-type miceStrains of miceAxon behaviorEarly eye formationAxon orderRetinal cell fateOptic chiasmRGC axonsBrain targetsGeniculate nucleusCell axonsPotential downstream effectorsAxon sortingMorphogenetic proteinsMice
2006
Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling. Journal Of Neuroscience 2006, 26: 4338-4349. PMID: 16624954, PMCID: PMC6674004, DOI: 10.1523/jneurosci.3745-05.2006.Peer-Reviewed Original ResearchConceptsBarrel map formationLayer IV neuronsActivity-dependent developmentAMPA receptor functionCAMP/PKA-dependent pathwayLong-term potentiationThalamocortical synapsesThalamocortical afferentsTC synapsesThalamocortical synapseBarrel cortexPKA targetsBarrel patternCortical developmentPKA-dependent pathwayBrain circuitryPostsynaptic processesSynapse formationReceptor functionCAMP-dependent protein kinaseHebbian mechanismsDevelopmental increaseMiceSynapsesActivity-dependent modelsRole of Efficient Neurotransmitter Release in Barrel Map Development
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development. Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl CyclasesAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBlotting, WesternBrain MappingCalciumDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalGTP-Binding ProteinsIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsModels, NeurologicalNeural PathwaysNeuronal PlasticityNeurotransmitter AgentsN-MethylaspartatePatch-Clamp TechniquesSomatosensory CortexSynapsinsThalamusTime FactorsConceptsThalamocortical afferentsEfficient neurotransmitter releaseNeurotransmitter releaseBarrelless miceActivity-dependent processesNeuronal circuit formationAdenylyl cyclase IBarrel mapSynaptic transmissionPresynaptic terminalsPresynaptic functionCircuit formationCortical mapsMutant miceMiceNeuronal modulesRelease efficacyEfficient synaptic transmissionActive zone proteinsZone proteinEfficacyMap developmentRIM proteinsAC1 functionRelease
2005
Pretarget sorting of retinocollicular axons in the mouse
Plas DT, Lopez JE, Crair MC. Pretarget sorting of retinocollicular axons in the mouse. The Journal Of Comparative Neurology 2005, 491: 305-319. PMID: 16175549, PMCID: PMC2716708, DOI: 10.1002/cne.20694.Peer-Reviewed Original ResearchConceptsRetinotopic orderOptic tractRetinotectal mapRetinal ganglion cell axonsGanglion cell axonsWild-type miceAxon orderRetinocollicular axonsMouse genetic modelsCell axonsTectal mapMouse modelRetinal axonsOptic tectumSubsequent tractsAxonsTarget cellsTractMiceVertebrate visual systemTectumRetinaRoger SperryGenetic modelsLipophilic dyeEvidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse
Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC. Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse. Journal Of Neuroscience 2005, 25: 6929-6938. PMID: 16033903, PMCID: PMC6725341, DOI: 10.1523/jneurosci.1470-05.2005.Peer-Reviewed Original ResearchConceptsRetinotopic map refinementRetinal activitySuperior colliculusActivity-dependent factorsNasal-temporal axisSpontaneous retinal activityWild-type miceActivity-dependent cuesActivity-dependent mechanismsRetinotopic map developmentAxon guidance cuesGuidance cuesMolecular mechanismsRetinal wavesPharmacological interventionsMouse modelRetinotopic mapColliculusSame animalsMicePreferential roleReceptive fieldsPhysiological methodsInstructive roleMap refinement
2004
Adenylate Cyclase 1 dependent refinement of retinotopic maps in the mouse
Plas DT, Visel A, Gonzalez E, She WC, Crair MC. Adenylate Cyclase 1 dependent refinement of retinotopic maps in the mouse. Vision Research 2004, 44: 3357-3364. PMID: 15536003, DOI: 10.1016/j.visres.2004.09.036.Peer-Reviewed Original ResearchConceptsAdenylate cyclase 1Retino-collicular pathwayTopographic map refinementActivity-dependent factorsSuperior colliculusRetinotopic mapMutant miceSensory peripheryCellular mechanismsCyclase 1Superficial layersColliculusNeuronal mapsMiceGross topographyLittle evidenceDependent factorsMap refinementBiochemical techniques
2003
Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development
Lu HC, She WC, Plas DT, Neumann PE, Janz R, Crair MC. Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development. Nature Neuroscience 2003, 6: 939-947. PMID: 12897788, DOI: 10.1038/nn1106.Peer-Reviewed Original ResearchConceptsLong-term depressionLong-term potentiationAMPA receptor traffickingThalamocortical synapsesBarrelless miceBarrel map formationSynaptic AMPAR traffickingAMPAR subunit GluR1Activity-dependent mechanismsReceptor traffickingAC1 activityFunctional AMPARsSurface GluR1Thalamocortical afferentsMap formationAdenylyl cyclase IBarrel mapSubunit GluR1Cortical map formationAMPAR traffickingProtein kinase A (PKA) activitySynapsesAdenylyl cyclaseMiceImmature state
2002
Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth.
Wang SW, Mu X, Bowers WJ, Kim DS, Plas DJ, Crair MC, Federoff HJ, Gan L, Klein WH. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 2002, 129: 467-77. PMID: 11807038, DOI: 10.1242/dev.129.2.467.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell DifferentiationCulture TechniquesDNA-Binding ProteinsFemaleGene TargetingHumansMaleMiceMice, KnockoutMicroscopy, FluorescenceNeuritesRetinaRetinal Ganglion CellsTranscription Factor Brn-3Transcription Factor Brn-3ATranscription Factor Brn-3BTranscription Factor Brn-3CTranscription FactorsConceptsDouble knockout miceGanglion cell differentiationRetinal ganglion cell differentiationRetinal ganglion cellsOptic chiasmKnockout miceGanglion cellsMost retinal ganglion cellsRetinal ganglion cell axonsRetinal ganglion cell developmentGanglion cell axonsAxon outgrowthGanglion cell developmentCell differentiationDorsal rootsProjection neuronsTrigeminal ganglionCell axonsRetinal explantsPOU domain transcription factorBrn3bBrn3cMiceChiasmInner ear