Donald Engelman, PhD
Research & Publications
Biography
News
Research Summary
Our work is in two areas: interactions of transmembrane helices, and insertion of peptides into membranes. We have discovered a peptide that is soluble in water but can insert itself across a membrane if the local pH is low. This peptide can be used to deliver molecules into cells, driving delivery with low pH. Phalloidin, dyes, and PNAs can be delivered, and research is aimed at finding the rules for transport. We have also found that the peptide can target tumors when injected into mice, and we are pursuing this exciting finding with imaging and therapy in mind. Our studies of helix interactions are now concerned with their roles in viral envelope proteins and single TM receptors, and the use of druglike molecules to modulate the activity of receptors or to attenuate virulence by binding to the TM regions.
Specialized Terms: Helix Interactions; Lipid Bilayers; Membranes; Physical Biochemistry; Protein Folding; Proteins
Extensive Research Description
Folding and Oligomerization of Membrane Proteins
We are
interested in how the primary sequences of membrane proteins determine
their three dimensional structures, and hence their functions. The
folding of integral membrane proteins clearly differs from that of
soluble proteins since the membrane environment imposes constraints on
polypeptide secondary and tertiary structural features quite different
from those imposed by an aqueous environment.
A conceptual underpinning for much of the work in the group is that, for helical transmembrane proteins, the protein folding process can be considered to occur in two kinetically separated and therefore energetically distinct stages. First, transbilayer alpha-helices are formed (stage I) and second, the helices interact within the bilayer to form a specific globular tertiary structure (stage II).
In the case of oligomerization events, monomeric proteins are synthesized and inserted into the membrane, and these monomers subsequently interact in a side-to-side fashion to form complexes that involve helix-helix interactions similar to those found within polytopic helical membrane proteins.
Our most recent work in this area is to examine the association of transmembrane domains (TMs) involved in signaling by receptors that have a single TM, where the signaling mechanism is mediated by TM interactions (see essay below).
Uses and mechanism of pH dependant Tm insertion (in collaboration with the Reshetnyak/Andreev lab, University of Rhode Island)
We
have previously observed the spontaneous, pH-dependent insertion of a
water-soluble peptide to form a helix across lipid bilayers. We have
now used a related peptide, pH (low) insertion peptide (pHLIP), to
translocate cargo molecules attached to its C terminus across the
plasma membranes of living cells. Translocation is selective for low
pH, and various types of cargo molecules attached by disulfides can be
released by reduction in the cytoplasm, including peptide nucleic
acids, a cyclic peptide (phalloidin), and organic compounds. Because a
high extracellular acidity is characteristic of a variety of
pathological conditions (such as tumors, infarcts, stroke-afflicted
tissue, atherosclerotic lesions, sites of inflammation or infection, or
damaged tissue resulting from trauma), the pH (low) insertion peptide
may prove a useful tool for selective delivery of agents for drug
therapy, diagnostic imaging, genetic control, or cell regulation.
We have recently shown that pHLIP can localize and map acidic foci in kidneys, tumors and inflammatory sites in vivo. In a mouse breast adenocarcinoma model, fluorescently labeled pHLIP finds solid acidic tumors with high accuracy and accumulates in them even at a very early stage of tumor development. The peptide has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an alpha-helix. At physiological pH, the equilibrium is toward water, which explains its low affinity for cells in healthy tissue; at acidic pH, titration of Asp residues shifts the equilibrium toward membrane insertion and tissue accumulation. The pHLIP technology introduces a new concept to detect, target, and possibly treat acidic diseased tissue by employing the selective insertion and folding of membrane peptides.
We are continuing our work on the fundamental mechanism and capabilities of the pHLIP technology.
Coauthors
Research Interests
Biochemistry; Lipid Bilayers; Membranes; Molecular Biology; Protein Folding
Selected Publications
- Abstract 1804: Durable eradication of tumors by single injections of a pHLIP-STING agonistEngelman D, Reshetnyak Y, Andreev O. Abstract 1804: Durable eradication of tumors by single injections of a pHLIP-STING agonist Cancer Research 2023, 83: 1804-1804. DOI: 10.1158/1538-7445.am2023-1804.
- Tumor treatment by pHLIP-targeted antigen deliveryDuPont M, Visca H, Moshnikova A, Engelman D, Reshetnyak Y, Andreev O. Tumor treatment by pHLIP-targeted antigen delivery Frontiers In Bioengineering And Biotechnology 2023, 10: 1082290. DOI: 10.3389/fbioe.2022.1082290.
- Tumor treatment by pHLIP-targeted antigen deliveryDuPont M, Visca H, Moshnikova A, Engelman D, Reshetnyak Y, Andreev O. Tumor treatment by pHLIP-targeted antigen delivery Frontiers In Bioengineering And Biotechnology 2023, 10: 1082290. PMID: 36686229, PMCID: PMC9853002, DOI: 10.3389/fbioe.2022.1082290.
- Eradication of tumors and development of anti-cancer immunity using STINGa targeted by pHLIPMoshnikova A, DuPont M, Visca H, Engelman D, Andreev O, Reshetnyak Y. Eradication of tumors and development of anti-cancer immunity using STINGa targeted by pHLIP Frontiers In Oncology 2022, 12: 1023959. PMID: 36330464, PMCID: PMC9622777, DOI: 10.3389/fonc.2022.1023959.
- Targeting bladder urothelial carcinoma with pHLIP-ICG and inhibition of urothelial cancer cell proliferation by pHLIP-amanitinMoshnikova A, Golijanin B, Amin A, Doyle J, Kott O, Gershman B, DuPont M, Li Y, Lu X, Engelman D, Andreev O, Reshetnyak Y, Golijanin D. Targeting bladder urothelial carcinoma with pHLIP-ICG and inhibition of urothelial cancer cell proliferation by pHLIP-amanitin Frontiers In Urology 2022, 2: 868919. PMCID: PMC9691284, DOI: 10.3389/fruro.2022.868919.
- Targeting bladder urothelial carcinoma with pHLIP-ICG and inhibition of urothelial cancer cell proliferation by pHLIP-amanitinMoshnikova A, Golijanin B, Amin A, Doyle J, Kott O, Gershman B, DuPont M, Li Y, Lu X, Engelman D, Andreev O, Reshetnyak Y, Golijanin D. Targeting bladder urothelial carcinoma with pHLIP-ICG and inhibition of urothelial cancer cell proliferation by pHLIP-amanitin Frontiers In Urology 2022, 2: 868919. PMID: 36439552, PMCID: PMC9691284, DOI: 10.3389/fruro.2022.868919.
- Cell Boundaries, How Membranes and Their Proteins WorkWhite S, von Heijne G, Engelman D. Cell Boundaries, How Membranes and Their Proteins Work 2021 DOI: 10.1201/9780429341328.
- Abstract LB210: MicroRNA function is malleable and can be governed by target gene expression levelsSvoronos A, Campbell S, Engelman D. Abstract LB210: MicroRNA function is malleable and can be governed by target gene expression levels Cancer Research 2021, 81: lb210-lb210. DOI: 10.1158/1538-7445.am2021-lb210.
- Abstract A102: pHLIP technology for targeting acidity at surface of tumor cells and extracellular and intracellular delivery of imaging and therapeutic agentsReshetnyak Y, Andreev O, Engelman D. Abstract A102: pHLIP technology for targeting acidity at surface of tumor cells and extracellular and intracellular delivery of imaging and therapeutic agents Molecular Cancer Therapeutics 2019, 18: a102-a102. DOI: 10.1158/1535-7163.targ-19-a102.
- Abstract 1399: Ex-vivo targeting of urothelial carcinomas by fluorescent pHLIP imaging agentsGolijanin B, Moshnikova A, Engelman D, Andreev O, Reshetnyak Y, Amin A, Golijanin D. Abstract 1399: Ex-vivo targeting of urothelial carcinomas by fluorescent pHLIP imaging agents 2019, 1399-1399. DOI: 10.1158/1538-7445.sabcs18-1399.
- Abstract 1956: ICG pHLIP: A novel agent for fluorescence-guided surgeryCrawford T, Moshnikova A, Roles S, Carter L, Lewis J, Engelman D, Andreev O, Reshetnyak Y. Abstract 1956: ICG pHLIP: A novel agent for fluorescence-guided surgery 2019, 1956-1956. DOI: 10.1158/1538-7445.sabcs18-1956.
- Abstract 1399: Ex-vivo targeting of urothelial carcinomas by fluorescent pHLIP imaging agentsGolijanin B, Moshnikova A, Engelman D, Andreev O, Reshetnyak Y, Amin A, Golijanin D. Abstract 1399: Ex-vivo targeting of urothelial carcinomas by fluorescent pHLIP imaging agents Cancer Research 2019, 79: 1399-1399. DOI: 10.1158/1538-7445.am2019-1399.
- Abstract 1956: ICG pHLIP: A novel agent for fluorescence-guided surgeryCrawford T, Moshnikova A, Roles S, Carter L, Lewis J, Engelman D, Andreev O, Reshetnyak Y. Abstract 1956: ICG pHLIP: A novel agent for fluorescence-guided surgery Cancer Research 2019, 79: 1956-1956. DOI: 10.1158/1538-7445.am2019-1956.
- Abstract 2981: Targeting solid tumor acidic microenvironment with an alphalex PARP inhibitorParalkar V, Aiello R, Marshall D, Csengery J, Bourassa P, Zhang Q, Robinson B, Lopresti-Morrow L, Bechtold J, Tylaska L, Paradis T, Slaybaugh G, Visca H, Moshnikova A, Weerakkody D, Andreev O, Reshetnyak Y, Engelman D, Bindra R, Glazer P, Hellsund P. Abstract 2981: Targeting solid tumor acidic microenvironment with an alphalex PARP inhibitor Cancer Research 2019, 79: 2981-2981. DOI: 10.1158/1538-7445.am2019-2981.
- On the Folding and Insertion of Globular Membrane ProteinsWetlaufer D, Engelman D, Steitz T. On the Folding and Insertion of Globular Membrane Proteins 2019, 87-113. DOI: 10.4324/9780429314148-5.
- Acidity at the Surfaces of Cancer CellsAndreev O, Wei D, Engelman D, Reshetnyak Y. Acidity at the Surfaces of Cancer Cells Biophysical Journal 2018, 114: 359a. DOI: 10.1016/j.bpj.2017.11.1996.
- 69 Novel ex vivo endoscopic near infrared fluorescence imaging method using pHLIP®/ICG in patients undergoing radical cystectomy for urothelial carcinoma of the bladderBrito J, Golijanin B, Tran T, Moshnikova A, Gershman B, Engelman D, Reshetnyak Y, Andreev O, Amin A, Golijanin D. 69 Novel ex vivo endoscopic near infrared fluorescence imaging method using pHLIP®/ICG in patients undergoing radical cystectomy for urothelial carcinoma of the bladder European Urology Open Science 2017, 16: e116-e117. DOI: 10.1016/s1569-9056(17)30136-7.
- Abstract 4250: pHLIP® technology for imaging acidic tumorsMoshnikova A, Anderson M, Adochite R, Engelman D, Andreev O, Reshetnyak Y. Abstract 4250: pHLIP® technology for imaging acidic tumors Cancer Research 2016, 76: 4250-4250. DOI: 10.1158/1538-7445.am2016-4250.
- pHLIP®: Uses in Measuring Cell Surface pH, Imaging Tumors, and Delivering TherapeuticsEngelman D, Reshetnyak Y, Andreev O. pHLIP®: Uses in Measuring Cell Surface pH, Imaging Tumors, and Delivering Therapeutics Biophysical Journal 2016, 110: 418a. DOI: 10.1016/j.bpj.2015.11.2259.
- pHLIP® Targeting and Delivery of PNA to Silence MicroRNA in Tumor Cells§Engelman D, Cheng C, Bahal R, Babar I, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock D, Glazer P, Saltzman W, Slack F. pHLIP® Targeting and Delivery of PNA to Silence MicroRNA in Tumor Cells§ Biophysical Journal 2015, 108: 552a. DOI: 10.1016/j.bpj.2014.11.3029.
- Lipid Composition Influences the Insertion and Folding of pHLIP PeptidesKarabadzhak A, Weerakkody D, Andreev O, Reshetnyak Y, Engelman D. Lipid Composition Influences the Insertion and Folding of pHLIP Peptides Biophysical Journal 2015, 108: 555a. DOI: 10.1016/j.bpj.2014.11.3042.
- Abstract 974: Targeting the tumor microenvironment with antimiRs that exploit oncomiR addiction in lymphomaCheng C, Engelman D, Saltzman M, Slack F. Abstract 974: Targeting the tumor microenvironment with antimiRs that exploit oncomiR addiction in lymphoma 2014, 974-974. DOI: 10.1158/1538-7445.am2014-974.
- Imaging and Treating Tumors by Targeting their Acidity with Phlip, a Ph-Sensitve Insertion PeptideEngelman D, An M, Andreev O, Barrera F, Bahal R, Bosenberg M, Cheng C, Glazer P, Karabadzhak A, Reshetnyak Y, Saltzman W, Slack F, Svoronos A, Thevenin D. Imaging and Treating Tumors by Targeting their Acidity with Phlip, a Ph-Sensitve Insertion Peptide Biophysical Journal 2014, 106: 231a. DOI: 10.1016/j.bpj.2013.11.1350.
- Phlip-Fire: A High-Contrast, Insertion-Triggered Fluorescent Probe for Targeting Tumors In VivoKarabadzhak A, Yao L, Langenbacher R, Moshnikova A, Adochite R, An M, Andreev O, Reshetnyak Y, Engelman D. Phlip-Fire: A High-Contrast, Insertion-Triggered Fluorescent Probe for Targeting Tumors In Vivo Biophysical Journal 2014, 106: 88a-89a. DOI: 10.1016/j.bpj.2013.11.561.
- Targeting of Melanoma by pH (Low) Insertion Peptide (pHLIP)Svoronos A, Cheng C, Barrera F, Saltzman W, Bosenberg M, Engelman D. Targeting of Melanoma by pH (Low) Insertion Peptide (pHLIP) Biophysical Journal 2013, 104: 677a. DOI: 10.1016/j.bpj.2012.11.3740.
- Characterization of an Intermediate for the Formation of the Transmembrane Helix of pHLIP PeptideBarrera F, Karabadzhak A, Engelman D. Characterization of an Intermediate for the Formation of the Transmembrane Helix of pHLIP Peptide Biophysical Journal 2013, 104: 596a. DOI: 10.1016/j.bpj.2012.11.3309.
- Modulation of the pHLIP Transmembrane Helix Insertion PathwayReshetnyak Y, Karabadzhak A, Weerakkody D, Wijesinghe D, Thakur M, Engelman D, Markin V, Andreev O. Modulation of the pHLIP Transmembrane Helix Insertion Pathway Biophysical Journal 2013, 104: 62a-63a. DOI: 10.1016/j.bpj.2012.11.383.
- Membrane Physical Properties Influence Transmembrane Helix FormationBarrera F, Fendos J, Engelman D. Membrane Physical Properties Influence Transmembrane Helix Formation Biophysical Journal 2013, 104: 535a-536a. DOI: 10.1016/j.bpj.2012.11.2965.
- Visualizing pHLIP Insertion in Plasmamembrane and Endosomal MembraneYao L, Langenbacher R, Karabadzhak A, Engelman D, An M. Visualizing pHLIP Insertion in Plasmamembrane and Endosomal Membrane Biophysical Journal 2013, 104: 238a. DOI: 10.1016/j.bpj.2012.11.1342.
- Novel Concept of Delivery of Diagnostic and Therapeutic Agents to Cells in Acidic Diseased Tissue using Energy of Membrane-Associated FoldingAndreev O, Engelman D, Reshetnyak Y. Novel Concept of Delivery of Diagnostic and Therapeutic Agents to Cells in Acidic Diseased Tissue using Energy of Membrane-Associated Folding Biophysical Journal 2013, 104: 362a. DOI: 10.1016/j.bpj.2012.11.2013.
- Small‐angle neutron scatteringEngelman D, Moore P. Small‐angle neutron scattering 2012, 575-582. DOI: 10.1107/97809553602060000870.
- Abstract C2: Aspartic acid residues drive the membrane translocation of pHLIP, a therapeutic and imaging agent for solid tumorsBarrera F, An M, Wijesinghe D, Weerakkody D, Anderson M, Andreev O, Reshetnyak Y, Engelman D. Abstract C2: Aspartic acid residues drive the membrane translocation of pHLIP, a therapeutic and imaging agent for solid tumors Cancer Research 2011, 71: c2-c2. DOI: 10.1158/1538-7445.fbcr11-c2.
- First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical StructureKarabadzhak A, Weerakkody D, Thakur M, Anderson M, Engelman D, Andreev O, Markin V, Reshetnyak Y. First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical Structure Biophysical Journal 2011, 100: 346a. DOI: 10.1016/j.bpj.2010.12.2088.
- Correlation between Properties of pHLIP Peptide-Lipid Interaction and Tumor Targeting In VivoWeerakkody D, Karabadzhak A, Thakur M, Rossi B, Engelman D, Andreev O, Reshetnyak Y. Correlation between Properties of pHLIP Peptide-Lipid Interaction and Tumor Targeting In Vivo Biophysical Journal 2011, 100: 498a. DOI: 10.1016/j.bpj.2010.12.2918.
- Cancer Cell Proliferation is Inhibited by Phlip Mediated Delivery of Membrane Impermeable Toxin PhalloidinAn M, Wijesinghe D, Andreev O, Reshetnyak Y, Engelman D. Cancer Cell Proliferation is Inhibited by Phlip Mediated Delivery of Membrane Impermeable Toxin Phalloidin Biophysical Journal 2010, 98: 277a-278a. DOI: 10.1016/j.bpj.2009.12.1516.
- Membrane-Associated Folding and UnfoldingKarabadzhak A, Weerakkody D, Thakur M, Andreev G, Engelman D, Andreev O, Reshetnyak Y. Membrane-Associated Folding and Unfolding Biophysical Journal 2010, 98: 88a. DOI: 10.1016/j.bpj.2009.12.499.
- Involvement of Transmembrane Helix Dimerization and Rotation in Signaling by the Thrombopoietin ReceptorThévenin D, Matthews E, Rogers J, An M, Gotow L, Lira P, Reiter L, Brissette W, Engelman D. Involvement of Transmembrane Helix Dimerization and Rotation in Signaling by the Thrombopoietin Receptor Biophysical Journal 2010, 98: 420a. DOI: 10.1016/j.bpj.2009.12.2269.
- Energy Barriers and Helix Plasticity in the Membrane Insertion of pHLIPBarrera F, Musial-Siwek M, Andreev O, Reshetnyak Y, Engelman D. Energy Barriers and Helix Plasticity in the Membrane Insertion of pHLIP Biophysical Journal 2010, 98: 82a. DOI: 10.1016/j.bpj.2009.12.466.
- Translocating cell‐impermeable molecules through the plasma membrane of cancer cellsTHEVENIN D, An M, Andreev O, Reshetnyak Y, Engelman D. Translocating cell‐impermeable molecules through the plasma membrane of cancer cells The FASEB Journal 2009, 23: 796.7-796.7. DOI: 10.1096/fasebj.23.1_supplement.796.7.
- Image analysis of soft-tissue in-growth and attachment into highly porous alumina ceramic foam metalsKhalil A, Aponte C, Zhang R, Davisson T, Dickey I, Engelman D, Hawkins M, Mason M. Image analysis of soft-tissue in-growth and attachment into highly porous alumina ceramic foam metals Medical Engineering & Physics 2009, 31: 775-783. PMID: 19297233, DOI: 10.1016/j.medengphy.2009.02.007.
- Kinetics Of Peptide (pHLIP) Insertion And Folding In A Lipid Bilayer MembraneKarabadzhak A, Weerakkody D, Engelman D, Andreev O, Reshetnyak Y. Kinetics Of Peptide (pHLIP) Insertion And Folding In A Lipid Bilayer Membrane Biophysical Journal 2009, 96: 453a. DOI: 10.1016/j.bpj.2008.12.2327.
- Energetics Of Peptide (pHLIP) Binding To And Folding Across A Lipid Bilayer MembraneReshetnyak Y, Andreev O, Segala M, Markin V, Engelman D. Energetics Of Peptide (pHLIP) Binding To And Folding Across A Lipid Bilayer Membrane Biophysical Journal 2009, 96: 206a. DOI: 10.1016/j.bpj.2008.12.1836.
- pHLIP-bionanosyringe for Targeting Acidic Solid Tumors and Selective Delivery of NanomaterialsYao L, Zheng S, Engelman D, Reshetnyak Y, Andreev O. pHLIP-bionanosyringe for Targeting Acidic Solid Tumors and Selective Delivery of Nanomaterials Biophysical Journal 2009, 96: 632a. DOI: 10.1016/j.bpj.2008.12.3344.
- Small‐angle neutron scatteringEngelman D, Moore P. Small‐angle neutron scattering 2006, F: 438-443. DOI: 10.1107/97809553602060000701.
- Mutations of conserved glycine residues within the membrane-spanning domain of human immunodeficiency virus type 1 gp41 can inhibit membrane fusion and incorporation of Env onto virions.Miyauchi K, Curran R, Matthews E, Komano J, Hoshino T, Engelman D, Matsuda Z. Mutations of conserved glycine residues within the membrane-spanning domain of human immunodeficiency virus type 1 gp41 can inhibit membrane fusion and incorporation of Env onto virions. Japanese Journal Of Infectious Diseases 2006, 59: 77-84. PMID: 16632906.
- Isolation and Identification of Membrane Protein Oligomers from the E. coli Inner MembraneStanley B, Engelman D. Isolation and Identification of Membrane Protein Oligomers from the E. coli Inner Membrane The FASEB Journal 2006, 20: lb76-lb77. DOI: 10.1096/fasebj.20.5.lb76-d.
- ph‐Triggered Transport of Molecules into Cells by Transmembrane Helix InsertionEngelman D, Andreev O, Reshetnyak Y. ph‐Triggered Transport of Molecules into Cells by Transmembrane Helix Insertion The FASEB Journal 2006, 20: a457-a457. DOI: 10.1096/fasebj.20.4.a457-b.
- Amphipols: polymeric surfactants for membrane biology researchPopot J, Berry E, Charvolin D, Creuzenet C, Ebel C, Engelman D, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey J, Leonard K, Shuman H, Timmins P, Warschawski D, Zito F, Zoonens M, Pucci B, Tribet C. Amphipols: polymeric surfactants for membrane biology research Cellular And Molecular Life Sciences 2003, 60: 1559-1574. PMID: 14513831, DOI: 10.1007/s00018-003-3169-6.
- Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimerFleming K, Engelman D. Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer Proteins Structure Function And Bioinformatics 2001, 45: 313-317. PMID: 11746678, DOI: 10.1002/prot.1151.
- Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variantsFleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.
- Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von HeijneLeeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.
- The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactionsSenes A, Ubarretxena-Belandia I, Engelman D. The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 9056-9061. PMID: 11481472, PMCID: PMC55372, DOI: 10.1073/pnas.161280798.
- High-Yield Synthesis and Purification of an α-Helical Transmembrane DomainFisher L, Engelman D. High-Yield Synthesis and Purification of an α-Helical Transmembrane Domain Analytical Biochemistry 2001, 293: 102-108. PMID: 11373085, DOI: 10.1006/abio.2001.5122.
- Helical membrane proteins: diversity of functions in the context of simple architectureUbarretxena-Belandia I, Engelman D. Helical membrane proteins: diversity of functions in the context of simple architecture Current Opinion In Structural Biology 2001, 11: 370-376. PMID: 11406389, DOI: 10.1016/s0959-440x(00)00217-7.
- Conversion of Phospholamban into a Soluble Pentameric Helical Bundle †Li H, Cocco M, Steitz T, Engelman D. Conversion of Phospholamban into a Soluble Pentameric Helical Bundle † Biochemistry 2001, 40: 6636-6645. PMID: 11380258, DOI: 10.1021/bi0026573.
- Polar residues drive association of polyleucine transmembrane helicesZhou F, Merianos H, Brunger A, Engelman D. Polar residues drive association of polyleucine transmembrane helices Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 2250-2255. PMID: 11226225, PMCID: PMC30124, DOI: 10.1073/pnas.041593698.
- Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von HeijnePetrache H, Grossfield A, MacKenzie K, Engelman D, Woolf T. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne Journal Of Molecular Biology 2000, 302: 727-746. PMID: 10986130, DOI: 10.1006/jmbi.2000.4072.
- A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering11Edited by P. E. WrightBu Z, Neumann D, Lee S, Brown C, Engelman D, Han C. A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering11Edited by P. E. Wright Journal Of Molecular Biology 2000, 301: 525-536. PMID: 10926525, DOI: 10.1006/jmbi.2000.3978.
- HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTIONPopot J, Engelman D. HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION Annual Review Of Biochemistry 2000, 69: 881-922. PMID: 10966478, DOI: 10.1146/annurev.biochem.69.1.881.
- Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions11Edited by G. von HeijneSenes A, Gerstein M, Engelman D. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions11Edited by G. von Heijne Journal Of Molecular Biology 2000, 296: 921-936. PMID: 10677292, DOI: 10.1006/jmbi.1999.3488.
- The GxxxG motif: A framework for transmembrane helix-helix association11Edited by G. von HeijneRuss W, Engelman D. The GxxxG motif: A framework for transmembrane helix-helix association11Edited by G. von Heijne Journal Of Molecular Biology 2000, 296: 911-919. PMID: 10677291, DOI: 10.1006/jmbi.1999.3489.
- Interhelical hydrogen bonding drives strong interactions in membrane proteinsXiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.
- Design of single-layer β-sheets without a hydrophobic coreKoide S, Huang X, Link K, Koide A, Bu Z, Engelman D. Design of single-layer β-sheets without a hydrophobic core Nature 2000, 403: 456-460. PMID: 10667801, DOI: 10.1038/35000255.
- Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von HeijneFisher L, Engelman D, Sturgis J. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne Journal Of Molecular Biology 1999, 293: 639-651. PMID: 10543956, DOI: 10.1006/jmbi.1999.3126.
- The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent FusionMcNew J, Weber T, Engelman D, Söllner T, Rothman J. The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion Molecular Cell 1999, 4: 415-421. PMID: 10518222, DOI: 10.1016/s1097-2765(00)80343-3.
- A Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray ScatteringBu Z, Engelman D. A Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering Biophysical Journal 1999, 77: 1064-1073. PMID: 10423450, PMCID: PMC1300396, DOI: 10.1016/s0006-3495(99)76956-0.
- Visual Arrestin Activity May Be Regulated by Self-association*Schubert C, Hirsch J, Gurevich V, Engelman D, Sigler P, Fleming K. Visual Arrestin Activity May Be Regulated by Self-association* Journal Of Biological Chemistry 1999, 274: 21186-21190. PMID: 10409673, DOI: 10.1074/jbc.274.30.21186.
- Multistep Denaturation of Borrelia burgdorferi OspA, a Protein Containing a Single-Layer β-Sheet †Koide S, Bu Z, Risal D, Pham T, Nakagawa T, Tamura A, Engelman D. Multistep Denaturation of Borrelia burgdorferi OspA, a Protein Containing a Single-Layer β-Sheet † Biochemistry 1999, 38: 4757-4767. PMID: 10200164, DOI: 10.1021/bi982443+.
- TOXCAT: A measure of transmembrane helix association in a biological membraneRuss W, Engelman D. TOXCAT: A measure of transmembrane helix association in a biological membrane Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 863-868. PMID: 9927659, PMCID: PMC15316, DOI: 10.1073/pnas.96.3.863.
- A solution SAXS study of borrelia burgdorferi OspA, a protein containing a single‐layer β‐sheetBu Z, Engelman D, Koide S. A solution SAXS study of borrelia burgdorferi OspA, a protein containing a single‐layer β‐sheet Protein Science 1998, 7: 2681-2683. PMID: 9865964, PMCID: PMC2143892, DOI: 10.1002/pro.5560071223.
- Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?aADAMS P, LEE A, BRÜNGER A, ENGELMAN D. Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?a Annals Of The New York Academy Of Sciences 1998, 853: 178-185. PMID: 10603945, DOI: 10.1111/j.1749-6632.1998.tb08265.x.
- A Small‐Angle X‐ray Scattering Apparatus for Studying Biological Macromolecules in SolutionBu Z, Perlo A, Johnson G, Olack G, Engelman D, Wyckoff H. A Small‐Angle X‐ray Scattering Apparatus for Studying Biological Macromolecules in Solution Journal Of Applied Crystallography 1998, 31: 533-543. DOI: 10.1107/s0021889897015422.
- Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerizationMacKenzie K, Engelman D. Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3583-3590. PMID: 9520409, PMCID: PMC19879, DOI: 10.1073/pnas.95.7.3583.
- A Biophysical Study of Integral Membrane Protein Folding †Hunt J, Earnest T, Bousché O, Kalghatgi K, Reilly K, Horváth C, Rothschild K, Engelman D. A Biophysical Study of Integral Membrane Protein Folding † Biochemistry 1997, 36: 15156-15176. PMID: 9398244, DOI: 10.1021/bi970146j.
- Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix †Hunt J, Rath P, Rothschild K, Engelman D. Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix † Biochemistry 1997, 36: 15177-15192. PMID: 9398245, DOI: 10.1021/bi970147b.
- Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. MoodyHunt J, McCrea P, Zaccaı̈ G, Engelman D. Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. Moody Journal Of Molecular Biology 1997, 273: 1004-1019. PMID: 9367787, DOI: 10.1006/jmbi.1997.1330.
- The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. MoodyFleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.
- Are there dominant membrane protein families with a given number of helices?Arkin I, Brünger A, Engelman D. Are there dominant membrane protein families with a given number of helices? Proteins Structure Function And Bioinformatics 1997, 28: 465-466. PMID: 9261863, DOI: 10.1002/(sici)1097-0134(199708)28:4<465::aid-prot1>3.0.co;2-9.
- STRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMERArkin I, Adams P, Brünger A, Smith S, Engelman D. STRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER Annual Review Of Biophysics 1997, 26: 157-179. PMID: 9241417, DOI: 10.1146/annurev.biophys.26.1.157.
- A Transmembrane Helix Dimer: Structure and ImplicationsMacKenzie K, Prestegard J, Engelman D. A Transmembrane Helix Dimer: Structure and Implications Science 1997, 276: 131-133. PMID: 9082985, DOI: 10.1126/science.276.5309.131.
- Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformationBurke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.
- Structure of the Transmembrane Cysteine Residues in PhospholambanArkin I, Adams P, Brünger A, Aimoto S, Engelman D, Smith S. Structure of the Transmembrane Cysteine Residues in Phospholamban The Journal Of Membrane Biology 1997, 155: 199-206. PMID: 9050443, DOI: 10.1007/s002329900172.
- Two EGF molecules contribute additively to stabilization of the EGFR dimerLemmon M, Bu Z, Ladbury J, Zhou M, Pinchasi D, Lax I, Engelman D, Schlessinger J. Two EGF molecules contribute additively to stabilization of the EGFR dimer The EMBO Journal 1997, 16: 281-294. PMID: 9029149, PMCID: PMC1169635, DOI: 10.1093/emboj/16.2.281.
- Crossing the Hydrophobic Barrier--Insertion of Membrane ProteinsEngelman D. Crossing the Hydrophobic Barrier--Insertion of Membrane Proteins Science 1996, 274: 1850-1851. PMID: 8984645, DOI: 10.1126/science.274.5294.1850.
- Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searchingAdams P, Engelman D, Brünger A. Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching Proteins Structure Function And Bioinformatics 1996, 26: 257-261. PMID: 8953647, DOI: 10.1002/(sici)1097-0134(199611)26:3<257::aid-prot2>3.0.co;2-b.
- Surface point mutations that significantly alter the structure and stability of a protein's denatured stateSmith C, Bu Z, Engelman D, Regan L, Anderson K, Sturtevant J. Surface point mutations that significantly alter the structure and stability of a protein's denatured state Protein Science 1996, 5: 2009-2019. PMID: 8897601, PMCID: PMC2143264, DOI: 10.1002/pro.5560051007.
- A Zinc-binding Domain Involved in the Dimerization of RAG1Rodgers K, Bu Z, Fleming K, Schatz D, Engelman D, Coleman J. A Zinc-binding Domain Involved in the Dimerization of RAG1 Journal Of Molecular Biology 1996, 260: 70-84. PMID: 8676393, DOI: 10.1006/jmbi.1996.0382.
- Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shiftsMacKenzie K, Prestegard J, Engelman D. Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts Journal Of Biomolecular NMR 1996, 7: 256-260. PMID: 8785502, DOI: 10.1007/bf00202043.
- Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholambanLudlam C, Arkin I, Liu X, Rothman M, Rath P, Aimoto S, Smith S, Engelman D, Rothschild K. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban Biophysical Journal 1996, 70: 1728-1736. PMID: 8785331, PMCID: PMC1225141, DOI: 10.1016/s0006-3495(96)79735-7.
- Mapping the lipid-exposed surfaces of membrane proteinsArkin I, MacKenzie K, Fisher L, Aimoto S, Engelman D, Smith S. Mapping the lipid-exposed surfaces of membrane proteins Nature Structural & Molecular Biology 1996, 3: 240-243. PMID: 8605625, DOI: 10.1038/nsb0396-240.
- Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †Peled-Zehavi H, Arkin I, Engelman D, Shai Y. Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes † Biochemistry 1996, 35: 6828-6838. PMID: 8639634, DOI: 10.1021/bi952988t.
- Small angle x-ray scattering studies of magnetically oriented lipid bilayersHare B, Prestegard J, Engelman D. Small angle x-ray scattering studies of magnetically oriented lipid bilayers Biophysical Journal 1995, 69: 1891-1896. PMID: 8580332, PMCID: PMC1236422, DOI: 10.1016/s0006-3495(95)80059-7.
- Structural Model of the Phospholamban Ion Channel Complex in Phospholipid MembranesArkin I, Rothman M, Ludlam C, Aimoto S, Engelman D, Rothschild K, Smith S. Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes Journal Of Molecular Biology 1995, 248: 824-834. PMID: 7752243, DOI: 10.1006/jmbi.1995.0263.
- Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholambanAdams P, Arkin I, Engelman D, Brünger A. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban Nature Structural & Molecular Biology 1995, 2: 154-162. PMID: 7749920, DOI: 10.1038/nsb0295-154.
- Helix-helix interactions inside membranesEngelman D, Adair B, Brunger A, Hunt J, Kahn T, Lemmon M, MacKenzie K, Treutlein H. Helix-helix interactions inside membranes 1995, 297-310. DOI: 10.1007/978-3-0348-9057-1_21.
- Specificity and promiscuity in membrane helix interactionsLemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions FEBS Letters 1994, 346: 17-20. PMID: 8206151, DOI: 10.1016/0014-5793(94)00467-6.
- Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study.Adair B, Engelman D. Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 1994, 33: 5539-44. PMID: 8180176, DOI: 10.1021/bi00184a024.
- Specificity and promiscuity in membrane helix interactionsLemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.
- A dimerization motif for transmembrane α–helicesLemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.
- Rotational orientation of transmembrane α-helices in bacteriorhodopsin A neutron diffraction studySamatey F, Zaccaï G, Engelman D, Etchebest C, Popot J. Rotational orientation of transmembrane α-helices in bacteriorhodopsin A neutron diffraction study Journal Of Molecular Biology 1994, 236: 1093-1104. PMID: 8120889, DOI: 10.1016/0022-2836(94)90014-0.
- Mutations can cause large changes in the conformation of a denatured protein.Flanagan J, Kataoka M, Fujisawa T, Engelman D. Mutations can cause large changes in the conformation of a denatured protein. Biochemistry 1993, 32: 10359-70. PMID: 8399179, DOI: 10.1021/bi00090a011.
- BACTERIORHODOPSIN RECONSTITUTED FROM TWO INDIVIDUAL HELICES AND THE COMPLEMENTARY FIVE‐HELIX FRAGMENT IS PHOTOACTIVEKataoka M, Kahn T, Tsujiuchi Y, Engelman D, Tokunaga F. BACTERIORHODOPSIN RECONSTITUTED FROM TWO INDIVIDUAL HELICES AND THE COMPLEMENTARY FIVE‐HELIX FRAGMENT IS PHOTOACTIVE Photochemistry And Photobiology 1992, 56: 895-901. PMID: 1492135, DOI: 10.1111/j.1751-1097.1992.tb09710.x.
- Forces involved in the assembly and stabilization of membrane proteins1Cramer W, Engelman D, Von Heijne G, Rees D. Forces involved in the assembly and stabilization of membrane proteins1 The FASEB Journal 1992, 6: 3397-3402. PMID: 1464373, DOI: 10.1096/fasebj.6.15.1464373.
- Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin.Kahn T, Sturtevant J, Engelman D. Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. Biochemistry 1992, 31: 8829-39. PMID: 1390670, DOI: 10.1021/bi00152a020.
- Helix-helix interactions inside lipid bilayersLemmon M, Engelman D. Helix-helix interactions inside lipid bilayers Current Opinion In Structural Biology 1992, 2: 511-518. PMCID: PMC7133266, DOI: 10.1016/0959-440x(92)90080-q.
- Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.Kahn T, Engelman D. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 1992, 31: 6144-51. PMID: 1627558, DOI: 10.1021/bi00141a027.
- Intramembrane Helix-Helix Association in Oligomerization and Transmembrane SignalingBormann B, Engelman D. Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling Annual Review Of Biophysics 1992, 21: 223-242. PMID: 1326354, DOI: 10.1146/annurev.bb.21.060192.001255.
- PrefaceEngelman D. Preface Annual Review Of Biophysics 1992, 21 DOI: 10.1146/annurev.bb.21.111006.100001.
- Truncated staphylococcal nuclease is compact but disordered.Flanagan J, Kataoka M, Shortle D, Engelman D. Truncated staphylococcal nuclease is compact but disordered. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 748-752. PMID: 1731350, PMCID: PMC48316, DOI: 10.1073/pnas.89.2.748.
- Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and ModelingEngelman D, Adair B, Brünger A, Flanagan J, Lemmon M, Treutlein H, Zhang J. Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling 1992, 25: 115-125. DOI: 10.1007/978-94-011-2718-9_11.
- Structure-function studies of bacteriorhodopsin XV. Effects of deletions in loops B-C and E-F on bacteriorhodopsin chromophore and structureGilles-Gonzalez M, Engelman D, Khorana H. Structure-function studies of bacteriorhodopsin XV. Effects of deletions in loops B-C and E-F on bacteriorhodopsin chromophore and structure Journal Of Biological Chemistry 1991, 266: 8545-8550. PMID: 2022666, DOI: 10.1016/s0021-9258(18)93009-7.
- Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation.Kataoka M, Head J, Persechini A, Kretsinger R, Engelman D. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry 1991, 30: 1188-92. PMID: 1991098, DOI: 10.1021/bi00219a004.
- Membrane protein folding and oligomerization: the two-stage model.Popot J, Engelman D. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 1990, 29: 4031-7. PMID: 1694455, DOI: 10.1021/bi00469a001.
- MEMBRANE PROTEIN MODELS: POSSIBILITIES AND PROBABILITIESPOPOT J, ENGELMAN D. MEMBRANE PROTEIN MODELS: POSSIBILITIES AND PROBABILITIES 1990, 147-151. DOI: 10.1016/b978-1-85166-512-9.50019-4.
- Chapter 6 Bacteriorhodopsin Folding in Membranes: A Two-Stage ProcessEngelman D, Adair B, Hunt J, Kahn T, Popot J. Chapter 6 Bacteriorhodopsin Folding in Membranes: A Two-Stage Process 1990, 36: 71-78. DOI: 10.1016/s0070-2161(08)60168-9.
- The "microassembly" of integral membrane proteins: applications & implications.Popot J, Engelman D, Zaccai G, de Vitry C. The "microassembly" of integral membrane proteins: applications & implications. Progress In Clinical And Biological Research 1990, 343: 237-62. PMID: 2198582.
- Tertiary structure of bacteriorhodopsin Positions and orientations of helices A and B in the structural map determined by neutron diffractionPopot J, Engelman D, Gurel O, Zaccaï G. Tertiary structure of bacteriorhodopsin Positions and orientations of helices A and B in the structural map determined by neutron diffraction Journal Of Molecular Biology 1989, 210: 829-847. PMID: 2614846, DOI: 10.1016/0022-2836(89)90111-3.
- Melittin binding causes a large calcium-dependent conformational change in calmodulin.Kataoka M, Head J, Seaton B, Engelman D. Melittin binding causes a large calcium-dependent conformational change in calmodulin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 6944-6948. PMID: 2780551, PMCID: PMC297967, DOI: 10.1073/pnas.86.18.6944.
- Limitations of the lipid state hypothesis for atherosclerosis are revealed by X-ray diffraction measurementsBurks C, Hong S, Ho M, Engelman D. Limitations of the lipid state hypothesis for atherosclerosis are revealed by X-ray diffraction measurements Atherosclerosis 1989, 77: 43-51. PMID: 2719761, DOI: 10.1016/0021-9150(89)90008-7.
- Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coliCapel M, Kjeldgaard M, Engelman D, Moore P. Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli Journal Of Molecular Biology 1988, 200: 65-87. PMID: 3288761, DOI: 10.1016/0022-2836(88)90334-8.
- A complete mapping of the positions of the proteins in the small ribosomal subunit of escherichia coliCapel M, Engelman D, Freeborn B, Kjeldgaard M, Langer J, Ramakrishnan V, Schindler D, Schneider D, Schoenborn B, Sillers I, Yabuki S, Moore P. A complete mapping of the positions of the proteins in the small ribosomal subunit of escherichia coli Macromolecular Symposia 1988, 15: 123-130. DOI: 10.1002/masy.19880150109.
- Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein FoldingPopot J, Engelman D. Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding 1988, 21: 381-398. DOI: 10.1007/978-94-009-3075-9_25.
- A Complete Mapping of the Proteins in the Small Ribosomal Subunit of Escherichia coliCapel M, Engelman D, Freeborn B, Kjeldgaard M, Langer J, Ramakrishnan V, Schindler D, Schneider D, Schoenborn B, Sillers I, Yabuki S, Moore P. A Complete Mapping of the Proteins in the Small Ribosomal Subunit of Escherichia coli Science 1987, 238: 1403-1406. PMID: 3317832, DOI: 10.1126/science.3317832.
- Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage processPopot J, Gerchman S, Engelman D. Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process Journal Of Molecular Biology 1987, 198: 655-676. PMID: 3430624, DOI: 10.1016/0022-2836(87)90208-7.
- Transmembrane topography of the nicotinic acetylcholine receptor delta subunit.McCrea P, Popot J, Engelman D. Transmembrane topography of the nicotinic acetylcholine receptor delta subunit. The EMBO Journal 1987, 6: 3619-26. PMID: 3428268, PMCID: PMC553829, DOI: 10.1002/j.1460-2075.1987.tb02693.x.
- Folding of Integral Membrane Proteins: Renaturation Experiments with Bacteriorhodopsin Support a Two-Stage MechanismPopot J, Engelman D. Folding of Integral Membrane Proteins: Renaturation Experiments with Bacteriorhodopsin Support a Two-Stage Mechanism 1987, 345-346. DOI: 10.1007/978-1-4613-1941-2_48.
- Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments.Popot J, Trewhella J, Engelman D. Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments. The EMBO Journal 1986, 5: 3039-44. PMID: 3792305, PMCID: PMC1167258, DOI: 10.1002/j.1460-2075.1986.tb04603.x.
- Localization of two chymotryptic fragments in the structure of renatured bacteriorhodopsin by neutron diffraction.Trewhella J, Popot J, Zaccaï G, Engelman D. Localization of two chymotryptic fragments in the structure of renatured bacteriorhodopsin by neutron diffraction. The EMBO Journal 1986, 5: 3045-9. PMID: 3792306, PMCID: PMC1167259, DOI: 10.1002/j.1460-2075.1986.tb04604.x.
- Identifying Nonpolar Transbilayer Helices in Amino Acid Sequences of Membrane ProteinsEngelman D, Steitz T, Goldman A. Identifying Nonpolar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins Annual Review Of Biophysics 1986, 15: 321-353. PMID: 3521657, DOI: 10.1146/annurev.bb.15.060186.001541.
- Neutron diffraction studies of bacteriorhodopsinTrewhella J, Popot J, Engelman D, Zaccai G. Neutron diffraction studies of bacteriorhodopsin Physica B+C 1986, 136: 249-251. DOI: 10.1016/s0378-4363(86)80067-5.
- Quaternary Organization of the 30S Ribosomal Subunit of Escherichia ColiMoore P, Capel M, Kjeldgaard M, Engelman D. Quaternary Organization of the 30S Ribosomal Subunit of Escherichia Coli Biophysical Journal 1986, 49: 13-15. PMID: 19431616, PMCID: PMC1329557, DOI: 10.1016/s0006-3495(86)83573-1.
- A 19 Protein Map of the 30S Ribosomal Subunit of Escherichia coliMoore P, Capel M, Kjeldgaard M, Engelman D. A 19 Protein Map of the 30S Ribosomal Subunit of Escherichia coli 1986, 87-100. DOI: 10.1007/978-1-4612-4884-2_5.
- On the Folding of BacteriorhodopsinEngelman D. On the Folding of Bacteriorhodopsin 1986, 167-172. DOI: 10.1007/978-1-4684-8410-6_18.
- Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering.Seaton B, Head J, Engelman D, Richards F. Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry 1985, 24: 6740-3. PMID: 4074724, DOI: 10.1021/bi00345a002.
- Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysisDumont M, Trewhella J, Engelman D, Richards F. Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis The Journal Of Membrane Biology 1985, 88: 233-247. PMID: 3913776, DOI: 10.1007/bf01871088.
- Uses of X-Ray and Neutron Solution Scattering in Membrane Structural StudiesEngelman D. Uses of X-Ray and Neutron Solution Scattering in Membrane Structural Studies 1985, 274-298. DOI: 10.1007/978-3-0348-6513-5_14.
- Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayerGogol E, Engelman D. Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayer Biophysical Journal 1984, 46: 491-495. PMID: 6498267, PMCID: PMC1435021, DOI: 10.1016/s0006-3495(84)84046-1.
- Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coliRamakrishnan V, Capel M, Kjeldgaard M, Engelman D, Moore P. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli Journal Of Molecular Biology 1984, 174: 265-284. PMID: 6371250, DOI: 10.1016/0022-2836(84)90338-3.
- Neutron Diffraction Studies of Bacteriorhodopsin StructureTrewhella J, Gogol E, Zaccai G, Engelman D. Neutron Diffraction Studies of Bacteriorhodopsin Structure 1984, 227-246. DOI: 10.1007/978-1-4899-0375-4_14.
- Neutron Scattering and the 30 S Ribosomal Subunit of E. coliMoore P, Engelman D, Langer J, Ramakrishnan V, Schindler D, Schoenborn B, Sillers I, Yabuki S. Neutron Scattering and the 30 S Ribosomal Subunit of E. coli 1984, 73-91. DOI: 10.1007/978-1-4899-0375-4_4.
- Inelastic Neutron Scattering Studies of Hexokinase in SolutionEngelman D, Dianoux A, Cusack S, Jacrot B. Inelastic Neutron Scattering Studies of Hexokinase in Solution 1984, 365-380. DOI: 10.1007/978-1-4899-0375-4_22.
- Neutron Scattering and the 30 S Ribosomal Subunit of E. coliMoore P, Engelman D, Langer J, Ramakrishnan V, Schindler D, Schoenborn B, Sillers I, Yabuki S. Neutron Scattering and the 30 S Ribosomal Subunit of E. coli 1984, 27: 73-91. PMID: 6370225, DOI: 10.1007/978-1-4899-0375-4_4.
- Inelastic Neutron Scattering Studies of Hexokinase in SolutionEngelman D, Dianoux A, Cusack S, Jacrot B. Inelastic Neutron Scattering Studies of Hexokinase in Solution 1984, 27: 365-380. PMID: 6712571, DOI: 10.1007/978-1-4899-0375-4_22.
- Neutron diffraction analysis of cytochrome b5 reconstituted in deuterated lipid multilayersGogol E, Engelman D, Zaccai G. Neutron diffraction analysis of cytochrome b5 reconstituted in deuterated lipid multilayers Biophysical Journal 1983, 43: 285-292. PMID: 6626669, PMCID: PMC1329297, DOI: 10.1016/s0006-3495(83)84352-5.
- Pair distribution functions of bacteriorhodopsin and rhodopsin in model bilayersPearson L, Chan S, Lewis B, Engelman D. Pair distribution functions of bacteriorhodopsin and rhodopsin in model bilayers Biophysical Journal 1983, 43: 167-174. PMID: 6616005, PMCID: PMC1329246, DOI: 10.1016/s0006-3495(83)84337-9.
- Assignment of segments of the bacteriorhodopsin sequence to positions in the structural mapTrewhella J, Anderson S, Fox R, Gogol E, Khan S, Engelman D, Zaccai G. Assignment of segments of the bacteriorhodopsin sequence to positions in the structural map Biophysical Journal 1983, 42: 233-241. PMID: 6871370, PMCID: PMC1329232, DOI: 10.1016/s0006-3495(83)84391-4.
- Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknessesLewis B, Engelman D. Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses Journal Of Molecular Biology 1983, 166: 203-210. PMID: 6854643, DOI: 10.1016/s0022-2836(83)80006-0.
- Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesiclesLewis B, Engelman D. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles Journal Of Molecular Biology 1983, 166: 211-217. PMID: 6854644, DOI: 10.1016/s0022-2836(83)80007-2.
- Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucoseJacrot B, Cusack S, Dianoux A, Engelman D. Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose Nature 1982, 300: 84-86. PMID: 6752726, DOI: 10.1038/300084a0.
- On the interpretation and prediction of X‐ray scattering profiles of biomolecules in solutionPickover C, Engelman D. On the interpretation and prediction of X‐ray scattering profiles of biomolecules in solution Biopolymers 1982, 21: 817-831. DOI: 10.1002/bip.360210408.
- [11] The identification of helical segments in the polypeptide chain of bacteriorhodopsinEngelman D, Goldman A, Steitz T. [11] The identification of helical segments in the polypeptide chain of bacteriorhodopsin 1982, 88: 81-88. DOI: 10.1016/0076-6879(82)88014-2.
- Quantitative Application of the Helical Hairpin Hypothesis to Membrane ProteinsSteitz T, Goldman A, Engelman D. Quantitative Application of the Helical Hairpin Hypothesis to Membrane Proteins Biophysical Journal 1982, 37: 124-125. PMID: 19431438, PMCID: PMC1329088, DOI: 10.1016/s0006-3495(82)84633-x.
- An Implication of the Structure of Bacteriorhodopsin Globular Membrane Proteins are Stabilized by Polar InteractionsEngelman D. An Implication of the Structure of Bacteriorhodopsin Globular Membrane Proteins are Stabilized by Polar Interactions Biophysical Journal 1982, 37: 187-188. PMID: 19431470, PMCID: PMC1329117, DOI: 10.1016/s0006-3495(82)84662-6.
- Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coliRamakrishnan V, Yabuki S, Sillers I, Schindler D, Engelman D, Moore P. Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli Journal Of Molecular Biology 1981, 153: 739-760. PMID: 7040690, DOI: 10.1016/0022-2836(81)90416-2.
- Cholesteryl myristate conformation in liquid crystalline mesophases determined by neutron scattering.Burks C, Engelman D. Cholesteryl myristate conformation in liquid crystalline mesophases determined by neutron scattering. Proceedings Of The National Academy Of Sciences Of The United States Of America 1981, 78: 6863-6867. PMID: 6947261, PMCID: PMC349152, DOI: 10.1073/pnas.78.11.6863.
- Conformation of liquid N-alkanesGoodsaid-Zalduondo F, Engelman D. Conformation of liquid N-alkanes Biophysical Journal 1981, 35: 587-594. PMID: 7272453, PMCID: PMC1327550, DOI: 10.1016/s0006-3495(81)84814-x.
- The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesisEngelman D, Steitz T. The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis Cell 1981, 23: 411-422. PMID: 7471207, DOI: 10.1016/0092-8674(81)90136-7.
- Bacteriorhodopsin is an inside-out protein.Engelman D, Zaccai G. Bacteriorhodopsin is an inside-out protein. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 5894-5898. PMID: 6934521, PMCID: PMC350178, DOI: 10.1073/pnas.77.10.5894.
- Path of the polypeptide in bacteriorhodopsin.Engelman D, Henderson R, McLachlan A, Wallace B. Path of the polypeptide in bacteriorhodopsin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 2023-2027. PMID: 6929535, PMCID: PMC348643, DOI: 10.1073/pnas.77.4.2023.
- Neutron diffraction analysis of the structure of rod photoreceptor membranes in intact retinasYeager M, Schoenborn B, Engelman D, Moore P, Stryer L. Neutron diffraction analysis of the structure of rod photoreceptor membranes in intact retinas Journal Of Molecular Biology 1980, 137: 315-348. PMID: 6973637, DOI: 10.1016/0022-2836(80)90319-8.
- Positions of proteins S10, S11 and S12 in the 30 S ribosomal subunit of Escherichia coliSchindler D, Langer J, Engelman D, Moore P. Positions of proteins S10, S11 and S12 in the 30 S ribosomal subunit of Escherichia coli Journal Of Molecular Biology 1979, 134: 595-620. PMID: 395318, DOI: 10.1016/0022-2836(79)90369-3.
- Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase.Pickover C, McKay D, Engelman D, Steitz T. Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase. Journal Of Biological Chemistry 1979, 254: 11323-11329. PMID: 387770, DOI: 10.1016/s0021-9258(19)86488-8.
- Small angle X-ray scattering of dimeric yeast hexokinase in solution.McDonald R, Engelman D, Steitz T. Small angle X-ray scattering of dimeric yeast hexokinase in solution. Journal Of Biological Chemistry 1979, 254: 2942-2943. PMID: 372185, DOI: 10.1016/s0021-9258(17)30165-5.
- Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate.McDonald R, Steitz T, Engelman D. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry 1979, 18: 338-42. PMID: 369601, DOI: 10.1021/bi00569a017.
- [49] On the feasibility and interpretation of intersubunit distance measurements using neutron scatteringMoore P, Engelman D. [49] On the feasibility and interpretation of intersubunit distance measurements using neutron scattering 1979, 59: 629-638. PMID: 440089, DOI: 10.1016/0076-6879(79)59118-6.
- [51] Neutron-scattering measurement of protein pair scattering functions from ribosomes containing deuterated proteinsEngelman D. [51] Neutron-scattering measurement of protein pair scattering functions from ribosomes containing deuterated proteins 1979, 59: 656-669. PMID: 440090, DOI: 10.1016/0076-6879(79)59120-4.
- The measurement of the locations and radii of gyration of proteins in the 30S ribosomal subunit of E. coli by neutron scatteringMoore P, Langer J, Engelman D. The measurement of the locations and radii of gyration of proteins in the 30S ribosomal subunit of E. coli by neutron scattering Journal Of Applied Crystallography 1978, 11: 479-482. DOI: 10.1107/s0021889878013643.
- The planar distributions of surface proteins and intramembrane particles in Acholeplasma laidlawii are differentially affected by the physical state of membrane lipidsWallace B, Engelman D. The planar distributions of surface proteins and intramembrane particles in Acholeplasma laidlawii are differentially affected by the physical state of membrane lipids Biochimica Et Biophysica Acta 1978, 508: 431-449. PMID: 638151, DOI: 10.1016/0005-2736(78)90090-1.
- X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal SubunitLAUGHREA M, ENGELMAN D, MOORE P. X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit The FEBS Journal 1978, 85: 529-534. PMID: 348475, DOI: 10.1111/j.1432-1033.1978.tb12268.x.
- Neutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunitLanger J, Engelman D, Moore P. Neutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit Journal Of Molecular Biology 1978, 119: 463-485. PMID: 347087, DOI: 10.1016/0022-2836(78)90197-3.
- Model calculations of protein pair interference functionsMoore P, Engelman D. Model calculations of protein pair interference functions Journal Of Molecular Biology 1977, 112: 228-234. PMID: 875017, DOI: 10.1016/s0022-2836(77)80140-x.
- The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawiiWallace B, Richards F, Engelman D. The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawii Journal Of Molecular Biology 1976, 107: 255-269. PMID: 1003469, DOI: 10.1016/s0022-2836(76)80004-6.
- Compositional mapping of cholesteryl ester droplets in the fatty streaks of human aorta.Hillman G, Engelman D. Compositional mapping of cholesteryl ester droplets in the fatty streaks of human aorta. Journal Of Clinical Investigation 1976, 58: 1008-1018. PMID: 965482, PMCID: PMC333265, DOI: 10.1172/jci108524.
- Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta.Engelman D, Hillman G. Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta. Journal Of Clinical Investigation 1976, 58: 997-1007. PMID: 965500, PMCID: PMC333264, DOI: 10.1172/jci108554.
- Neutron-scattering studies of the ribosome.Engelman D, Moore P. Neutron-scattering studies of the ribosome. Scientific American 1976, 235: 44-54. PMID: 968478, DOI: 10.1038/scientificamerican1076-44.
- Protein pair distance determination in the 30 S ribosomal subunit of E. coli.Engelman D, Moore P, Schoenborn B. Protein pair distance determination in the 30 S ribosomal subunit of E. coli. Brookhaven Symposia In Biology 1976, iv20-iv37. PMID: 786445.
- The production of deuterated E. coli.Moore P, Engelman D. The production of deuterated E. coli. Brookhaven Symposia In Biology 1976, v12-v23. PMID: 786448.
- Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7.Engelman D, Moore P, Schoenborn B. Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7. Proceedings Of The National Academy Of Sciences Of The United States Of America 1975, 72: 3888-3892. PMID: 1105567, PMCID: PMC433101, DOI: 10.1073/pnas.72.10.3888.
- The use of x-ray scattering in the study of lipid bilayer planar organizationEngelman D. The use of x-ray scattering in the study of lipid bilayer planar organization Biophysical Journal 1975, 15: 940-944. PMID: 1182268, PMCID: PMC1334757, DOI: 10.1016/s0006-3495(75)85871-1.
- Determination of Quaternary Structure by Small Angle Neutron ScatteringEngelman D, Moore P. Determination of Quaternary Structure by Small Angle Neutron Scattering Annual Review Of Biophysics And Bioengineering 1975, 4: 219-241. PMID: 1098555, DOI: 10.1146/annurev.bb.04.060175.001251.
- A neutron scattering study of the distribution of protein and RNA in the 30 S ribosomal subunit of Escherichia coliMoore P, Engelman D, Schoenborn B. A neutron scattering study of the distribution of protein and RNA in the 30 S ribosomal subunit of Escherichia coli Journal Of Molecular Biology 1975, 91: 101-120. PMID: 1102695, DOI: 10.1016/0022-2836(75)90374-5.
- The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of MicrocrystalsSteitz T, Richmond T, Wise D, Engelman D. The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of Microcrystals Proceedings Of The National Academy Of Sciences Of The United States Of America 1974, 71: 593-597. PMID: 4595565, PMCID: PMC388057, DOI: 10.1073/pnas.71.3.593.
- Asymmetry in the 50S Ribosomal Subunit of Escherichia coliMoore P, Engelman D, Schoenborn B. Asymmetry in the 50S Ribosomal Subunit of Escherichia coli Proceedings Of The National Academy Of Sciences Of The United States Of America 1974, 71: 172-176. PMID: 4589891, PMCID: PMC387959, DOI: 10.1073/pnas.71.1.172.
- A New Method for the Determination of Biological Quarternary Structure by Neutron ScatteringEngelman D, Moore P. A New Method for the Determination of Biological Quarternary Structure by Neutron Scattering Proceedings Of The National Academy Of Sciences Of The United States Of America 1972, 69: 1997-1999. PMID: 4506067, PMCID: PMC426853, DOI: 10.1073/pnas.69.8.1997.
- The Planar Organization of Lecithin-Cholesterol BilayersEngelman D, Rothman J. The Planar Organization of Lecithin-Cholesterol Bilayers Journal Of Biological Chemistry 1972, 247: 3694-3697. PMID: 5030638, DOI: 10.1016/s0021-9258(19)45196-x.
- Molecular Mechanism for the Interaction of Phospholipid with CholesterolROTHMAN J, ENGELMAN D. Molecular Mechanism for the Interaction of Phospholipid with Cholesterol Nature 1972, 237: 42-44. PMID: 4503742, DOI: 10.1038/newbio237042a0.
- The molecular structure of the membrane of Acholeplasma laidlawiiEngelman D. The molecular structure of the membrane of Acholeplasma laidlawii Chemistry And Physics Of Lipids 1972, 8: 298-302. PMID: 5041943, DOI: 10.1016/0009-3084(72)90058-8.
- Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniquesMetcalfe J, Metcalfe S, Engelman D. Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques Biochimica Et Biophysica Acta 1971, 241: 412-421. PMID: 5159791, DOI: 10.1016/0005-2736(71)90041-1.
- Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes using a fluorescence probeMetcalfe S, Metcalfe J, Engelman D. Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes using a fluorescence probe Biochimica Et Biophysica Acta 1971, 241: 422-430. PMID: 5159792, DOI: 10.1016/0005-2736(71)90042-3.
- Lipid bilayer structure in the membrane of Mycoplasma laidlawiiEngelman D. Lipid bilayer structure in the membrane of Mycoplasma laidlawii Journal Of Molecular Biology 1971, 58: 153-165. PMID: 5088924, DOI: 10.1016/0022-2836(71)90238-5.
- Bilayer Structure in MembranesWILKINS M, BLAUROCK A, ENGELMAN D. Bilayer Structure in Membranes Nature 1971, 230: 72-76. PMID: 5279041, DOI: 10.1038/newbio230072a0.
- Structural comparisons of native and reaggregated membranes.Engelman D, Metcalfe J, Metcalfe S. Structural comparisons of native and reaggregated membranes. British Journal Of Pharmacology 1971, 41: 382p. PMID: 5572285, PMCID: PMC1703325.
- X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawiiEngelman D. X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii Journal Of Molecular Biology 1970, 47: 115-117. PMID: 5413340, DOI: 10.1016/0022-2836(70)90407-9.
- CURRENT MODELS FOR THE STRUCTURE OF BIOLOGICAL MEMBRANESStoeckenius W, Engelman D. CURRENT MODELS FOR THE STRUCTURE OF BIOLOGICAL MEMBRANES Journal Of Cell Biology 1969, 42: 613-646. PMID: 4895596, PMCID: PMC2107701, DOI: 10.1083/jcb.42.3.613.
- Surface Area per Lipid Molecule in the Intact Membrane of the Human Red CellENGELMAN D. Surface Area per Lipid Molecule in the Intact Membrane of the Human Red Cell Nature 1969, 223: 1279-1280. PMID: 5811911, DOI: 10.1038/2231279a0.
- Characterization of the plasma membrane of Mycoplasma laidlawii. IV. Structure and composition of membrane and aggregated componentsEngelman D, Morowitz H. Characterization of the plasma membrane of Mycoplasma laidlawii. IV. Structure and composition of membrane and aggregated components Biochimica Et Biophysica Acta 1968, 150: 385-396. PMID: 5650391, DOI: 10.1016/0005-2736(68)90137-5.
- Characterization of the plasma membrane of Mycoplasma laidlawii. III. The formation and aggregation of small lipoprotein structures derived from sodium dodecyl sulfate-solubilized membrane componentsEngelman D, Morowitz H. Characterization of the plasma membrane of Mycoplasma laidlawii. III. The formation and aggregation of small lipoprotein structures derived from sodium dodecyl sulfate-solubilized membrane components Biochimica Et Biophysica Acta 1968, 150: 376-384. PMID: 5650390, DOI: 10.1016/0005-2736(68)90136-3.
- Characterization of the plasma membrane of Mycoplasma laidlawii. I. Sodium dodecyl sulfate solubilizationEngelman D, Terry T, Morowitz H. Characterization of the plasma membrane of Mycoplasma laidlawii. I. Sodium dodecyl sulfate solubilization Biochimica Et Biophysica Acta 1967, 135: 381-390. PMID: 6048810, DOI: 10.1016/0005-2736(67)90028-4.
- Characterization of the plasma membrane of Mycoplasma laidlawii. II. Modes of aggregation of solubilized membrane componentsTerry T, Engelman D, Morowitz H. Characterization of the plasma membrane of Mycoplasma laidlawii. II. Modes of aggregation of solubilized membrane components Biochimica Et Biophysica Acta 1967, 135: 391-405. PMID: 6058126, DOI: 10.1016/0005-2736(67)90029-6.