Georges El Fakhri, PhD, DABR
Elizabeth Mears and House Jameson Professor of Radiology and Biomedical Imaging, Therapeutic Radiology and of Biomedical Informatics & Data ScienceCards
About
Research
Publications
2025
Dopaminergic frontostriatal pathways in major depressive disorder and childhood sexual abuse: a multimodal neuroimaging investigation
Borchers L, Dan R, Belleau E, Kaiser R, Clegg R, Goer F, Pechtel P, Beltzer M, Wooten D, El Fakhri G, Normandin M, Pizzagalli D. Dopaminergic frontostriatal pathways in major depressive disorder and childhood sexual abuse: a multimodal neuroimaging investigation. Molecular Psychiatry 2025, 1-9. PMID: 40926089, DOI: 10.1038/s41380-025-03218-3.Peer-Reviewed Original ResearchResting-state functional connectivityMajor depressive disorderChildhood sexual abuseDopamine transporter availabilityDepressive disorderPathophysiology of Major Depressive DisorderStriatal dopamine transporter availabilitySexual abuseReward-related regionsSeed-based RSFCVentral tegmental areaDA dysregulationVentral striatumMDD episodeTegmental areaFrontostriatal pathwaysUnmedicated individualsChildhood maltreatmentNeuroimaging investigationsFunctional connectivityTransporter availabilityTreatment targetMRI studiesAbuseCo-occurrenceA steep decline in diastolic blood pressure over early to mid-life is associated with tau-PET burden in dementia-free adults.
Mulligan M, Beiser A, O'Donnell A, Banerjee A, Ghosh S, Thibault E, El Fakhri G, Johnson K, Seshadri S, McGrath E. A steep decline in diastolic blood pressure over early to mid-life is associated with tau-PET burden in dementia-free adults. Journal Of Alzheimer’s Disease 2025, 13872877251372561. PMID: 40899927, DOI: 10.1177/13872877251372561.Peer-Reviewed Original ResearchMid-lifePositron emission tomographyBlood pressureClinical dementiaFramingham Heart StudyDementia-free adultsMethodsThis prospective cohort studyEarly mid-lifeNew-onset hypertensionProspective cohort studyDiastolic blood pressureGlobal amyloid depositionHeart StudyPreclinical dementiaBP trajectoriesPersistent hypertensionCompound B (PiB)-PETConclusionsIn adultsCohort studyDBP declineImaging outcomesDementiaBackgroundThe relationshipEmission tomographyHypertensionPredicting tumor recurrence site after reirradiation in head and neck cancer: a retrospective external validation of a published [18F]-FDG PET radiomic signature
Beddok A, Grogg K, Nioche C, Rozenblum L, Orlhac F, Calugaru V, Crehange G, Shih H, Marin T, Buvat I, El Fakhri G. Predicting tumor recurrence site after reirradiation in head and neck cancer: a retrospective external validation of a published [18F]-FDG PET radiomic signature. La Radiologia Medica 2025, 1-10. PMID: 40833475, DOI: 10.1007/s11547-025-02072-1.Peer-Reviewed Original ResearchHead and neck cancerPET radiomics signaturePositive predictive valueNeck cancerRadiomics signatureRecurrent head and neck cancerExternal cohortTumor recurrence siteDose escalationLocoregional failurePET radiomicsRecurrence siteMassachusetts General HospitalLIFEx softwareIndependent cohortRadiomic featuresOriginal cutoffPatientsPredictive valuePublished cutoffsPurposeThis studyCohortGeneral HospitalRecurrenceConclusionThe studyMultimodal Imaging to Improve Patient Selection and Optimize Treatment Planning and Delivery for Patients Undergoing Reirradiation: A Scoping Review
Beddok A, Rozenblum L, Calugaru V, Feuvret L, Champion L, Eddine C, Crehange G, El Fakhri G, Buvat I. Multimodal Imaging to Improve Patient Selection and Optimize Treatment Planning and Delivery for Patients Undergoing Reirradiation: A Scoping Review. Current Oncology Reports 2025, 1-15. PMID: 40830323, DOI: 10.1007/s11912-025-01708-9.Peer-Reviewed Original ResearchPatient selectionTarget delineationOverall survivalPrognostic valueMultimodal imagingTreatment planningHead and neck cancerRadiation therapy techniquesMetabolically active volumeHigh-grade gliomasShorter overall survivalOptimal treatment planDiffusion-weighted imagingBioMed Central databasesPost-treatment changesLocoregional recurrenceUrinary toxicityDose paintingPelvic cancerTissue sparingProstate cancerRecurrent cancerDynamic contrast imagingNeck cancerSevere toxicityIn vivo 3D myocardial membrane potential mapping in humans using PET/MRI
Bijari F, Han P, Marin T, Lee W, Chemli Y, Gertsenshteyn I, Mounime I, Djebra Y, Chi D, Normandin M, Ma C, Fakhri G. In vivo 3D myocardial membrane potential mapping in humans using PET/MRI. EJNMMI Research 2025, 15: 93. PMID: 40715686, PMCID: PMC12297085, DOI: 10.1186/s13550-025-01287-7.Peer-Reviewed Original ResearchMembrane potentialExtracellular volume fraction measurementsExtracellular volume fraction mappingBolus-plus-infusion protocolT1 mapping sequencesVolume of distributionWritten Informed ConsentCardiac PET/MR imagingRigid image registrationHumans in vivoContrast agent injectionPET motion correctionFree breathingTracer volume of distributionImage registrationBolus injectionCardiac MRMitochondrial membrane potentialCardiac diseaseHealthy subjectsPET/MR imagingImaging studiesTreatment monitoringAgent injectionPET tracersBayesian Posterior Distribution Estimation of Kinetic Parameters in Dynamic Brain PET Using Generative Deep Learning Models
Djebra Y, Liu X, Marin T, Tiss A, Dhaynaut M, Guehl N, Johnson K, Fakhri G, Ma C, Ouyang J. Bayesian Posterior Distribution Estimation of Kinetic Parameters in Dynamic Brain PET Using Generative Deep Learning Models. IEEE Transactions On Medical Imaging 2025, PP: 1-1. PMID: 40663684, PMCID: PMC12318411, DOI: 10.1109/tmi.2025.3588859.Peer-Reviewed Original ResearchPosterior distributions of kinetic parametersEfficiency of deep learningGenerative deep learning modelsConditional variational autoencoderDeep learning modelsComputational efficiencyMetropolis-Hastings MCMCPosterior distributionHyperphosphorylated tauDynamic brain positron emission tomographyWGAN-GPDual decodersWasserstein GANVariational autoencoderKinetic parametersDeep learningComputational needsBayesian inferenceP-tauLearning modelsAlzheimer's diseaseNeurodegenerative diseasesComputation timeMCMC methodsEstimation of kinetic parametersRecommendations for Standardizing Nuclear Medicine Terminology and Data in the Era of Theranostics and Artificial Intelligence
Bradshaw T, Brosch-Lenz J, Uribe C, Karakatsanis N, Bruce R, Strigari L, Jha A, Dutta J, Schwartz J, Fakhri G, Avval A, Rahmim A, Saboury B. Recommendations for Standardizing Nuclear Medicine Terminology and Data in the Era of Theranostics and Artificial Intelligence. Journal Of Nuclear Medicine 2025, 66: 1471-1479. PMID: 40639909, PMCID: PMC12410288, DOI: 10.2967/jnumed.124.269424.Peer-Reviewed Original ResearchConceptsArtificial intelligenceDevelopment of AI algorithmsEmergence of artificial intelligenceRadiopharmaceutical therapyMetadata frameworkAI algorithmsLarge datasetsTraining datasetBiomedical ontologiesData sharingStructured datasetsStandard vocabulariesDatasetEra of theranosticsData collectionPatient outcomesNuclear medicine dataPHSOP12 Presentation Time: 9:55 AM No Training Set Required: Concept and Benchmarking of BrachyGPT, the First Fully-Automated AI Zero-Shot Brachytherapy Treatment Planning Framework
Li Z, Carlson D, Liu X, Damast S, Fakhri G, Tien C. PHSOP12 Presentation Time: 9:55 AM No Training Set Required: Concept and Benchmarking of BrachyGPT, the First Fully-Automated AI Zero-Shot Brachytherapy Treatment Planning Framework. Brachytherapy 2025, 24: s41-s42. DOI: 10.1016/j.brachy.2025.06.070.Peer-Reviewed Original ResearchDose-volume indicesHR-CTVDose distributionDwell positionsHDR-BTClinically acceptable plansTreatment planning systemDose-volume histogramsClinical criteriaTreatment planning frameworkApplication programming interfaceHigh-dose-rate brachytherapyTreatment planningReconstructed cathetersTG-43Dose kernelsZero-ShotIsodose comparisonEMBRACE IIAcceptable plansTraining setOARsPlanning systemAI approachesSeed modelArtificial intelligence-assisted detection of nasopharyngeal carcinoma on endoscopic images: a national, multicentre, model development and validation study
Shi Y, Li Z, Wang L, Wang H, Liu X, Gu D, Chen X, Liu X, Gong W, Jiang X, Li W, Lin Y, Liu K, Luo D, Peng T, Peng X, Tong M, Zheng H, Zhou X, Wu J, El Fakhri G, Chang M, Liao J, Li J, Wang D, Ye J, Qu S, Jiang W, Liu Q, Sun X, Zheng Y, Yu H. Artificial intelligence-assisted detection of nasopharyngeal carcinoma on endoscopic images: a national, multicentre, model development and validation study. The Lancet Digital Health 2025, 7: 100869. PMID: 40544083, DOI: 10.1016/j.landig.2025.03.001.Peer-Reviewed Original ResearchArea under the curveNasopharyngeal carcinomaEndoscopic imagesReal-world environmentDeep learning algorithmsDeep learning systemBenign hyperplasiaNormal nasopharynxShanghai Municipal Key Clinical SpecialtyLearning algorithmsMalignant imagesSkull base tumorsDetection of nasopharyngeal carcinomaLearning systemAI modelsIncidence of nasopharyngeal carcinomaPrimary hospitalsDiagnostic capabilitiesNasopharyngeal carcinoma diagnosisDiagnostic challengeImaging manifestationsCarcinoma diagnosisCarcinomaDiagnostic accuracyEndoscopic examinationUltrafast J-resolved magnetic resonance spectroscopic imaging for high-resolution metabolic brain imaging
Zhao Y, Li Y, Jin W, Guo R, Ma C, Tang W, Li Y, El Fakhri G, Liang Z. Ultrafast J-resolved magnetic resonance spectroscopic imaging for high-resolution metabolic brain imaging. Nature Biomedical Engineering 2025, 1-13. PMID: 40542105, DOI: 10.1038/s41551-025-01418-4.Peer-Reviewed Original ResearchSpectroscopic imagingLong data acquisition timesData acquisition timeJ-coupling informationMagnetic resonance spectroscopic imagingPhantom experimentsPoor spatial resolutionJ-couplingLabel-free metabolic imagingNon-invasive metabolic imagingSpatial resolutionAcquisition timeMetabolic imagingPhantomData acquisitionHuman brainPhysics-informed machine learningMetabolic brain imaging
News
News
- June 16, 2025
Yale Announces New Biomedical Imaging Institute
 - March 05, 2025
PET mapping of receptor occupancy using joint direct parametric reconstruction
 - March 03, 2025
Trainee Zhen Li awarded at SPIE Medical Imaging 2025
 - February 03, 2025Source: Magnetic Resonance in Imaging
Free‐breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model
 
Get In Touch
Contacts
Academic Office Number
Appointment Number
Mailing Address
Radiology & Biomedical Imaging
330 Cedar ST, P.O. Box 208042
New Haven, CT 06520
United States
Administrative Support
Events
Nov 202510Monday
Everyone Pamela L. Kunz, MD - David Klimstra, MD - Georges El Fakhri, PhD, DABR