2024
Efficient Survey Design for Finding High-redshift Galaxies with JWST
Vujeva L, Steinhardt C, Jespersen C, Frye B, Koekemoer A, Natarajan P, Faisst A, Hibon P, Furtak L, Atek H, Cen R, Sneppen A. Efficient Survey Design for Finding High-redshift Galaxies with JWST. The Astrophysical Journal 2024, 974: 23. DOI: 10.3847/1538-4357/ad639d.Peer-Reviewed Original ResearchNIRCam moduleGalaxy clustersLensing cluster fieldsHubble Space TelescopeMassive galaxy clustersBlank field surveysForeground galaxy clustersHigh-redshift galaxiesSpace TelescopeLensing clustersRedshift rangeSurvey strategyCluster fieldsJWSTSurvey depthGalaxiesSource planeHigh magnification factorObservational programMagnification factorLarge-areaHubbleImage planeNIRCamTelescopeThe Next Generation Deep Extragalactic Exploratory Public Near-infrared Slitless Survey Epoch 1 (NGDEEP-NISS1): Extragalactic Star-formation and Active Galactic Nuclei at 0.5 < z < 3.6
Pirzkal N, Rothberg B, Papovich C, Shen L, Leung G, Bagley M, Finkelstein S, Vanderhoof B, Lotz J, Koekemoer A, Hathi N, Cheng Y, Cleri N, Grogin N, Yung L, Dickinson M, Ferguson H, Gardner J, Jung I, Kartaltepe J, Ryan R, Simons R, Ravindranath S, Berg D, Backhaus B, Casey C, Castellano M, Ortiz Ó, Chworowsky K, Cox I, Davé R, Davis K, Estrada-Carpenter V, Fontana A, Fujimoto S, Giavalisco M, Grazian A, Hutchison T, Jaskot A, Kewley L, Kirkpatrick A, Kocevski D, Larson R, Matharu J, Natarajan P, Pentericci L, Pérez-González P, Snyder G, Somerville R, Trump J, Wilkins S. The Next Generation Deep Extragalactic Exploratory Public Near-infrared Slitless Survey Epoch 1 (NGDEEP-NISS1): Extragalactic Star-formation and Active Galactic Nuclei at 0.5 < z < 3.6. The Astrophysical Journal 2024, 969: 90. DOI: 10.3847/1538-4357/ad429c.Peer-Reviewed Original ResearchWide-field slitless spectroscopyProperties of galaxiesEmission linesPresence of active galactic nucleiSpectral energy distribution modelingPhysical properties of galaxiesActive galactic nucleiCase B recombinationMultiple position anglesSlitless spectroscopic observationsSupermassive black holesStar formation rateMultiple emission linesEnergy distribution modelNear-infrared wavelengthsGalactic nucleiNear-infrared imagingStar-formationBlack holeRedshift rangeSlitless spectroscopySpectroscopic observationsSlitless spectrographPosition angleGalaxiesOvermassive Black Holes at Cosmic Noon: Linking the Local and the High-redshift Universe
Mezcua M, Pacucci F, Suh H, Siudek M, Natarajan P. Overmassive Black Holes at Cosmic Noon: Linking the Local and the High-redshift Universe. The Astrophysical Journal Letters 2024, 966: l30. DOI: 10.3847/2041-8213/ad3c2a.Peer-Reviewed Original ResearchJames Webb Space TelescopeSupermassive black holesBlack holeCosmic noonCoevolution of supermassive black holesHigh-redshift UniverseHigh-z sourcesLow-mass galaxiesStar formation historyOvermassive black holesPresent-day UniverseGalactic nucleiEarly universeHost galaxiesSpace TelescopeActive galaxiesCosmic timeRedshift rangeStellar contentHigh-zFormation historyGalaxiesLocal relationsHolesTelescope
2023
NGDEEP Epoch 1: The Faint End of the Luminosity Function at z ∼ 9–12 from Ultradeep JWST Imaging
Leung G, Bagley M, Finkelstein S, Ferguson H, Koekemoer A, Pérez-González P, Morales A, Kocevski D, Yang G, Somerville R, Wilkins S, Yung L, Fujimoto S, Larson R, Papovich C, Pirzkal N, Berg D, Lotz J, Castellano M, Ortiz Ó, Cheng Y, Dickinson M, Giavalisco M, Hathi N, Hutchison T, Jung I, Kartaltepe J, Natarajan P, Rothberg B. NGDEEP Epoch 1: The Faint End of the Luminosity Function at z ∼ 9–12 from Ultradeep JWST Imaging. The Astrophysical Journal Letters 2023, 954: l46. DOI: 10.3847/2041-8213/acf365.Peer-Reviewed Original ResearchFaint-end slopeGalaxy candidatesFaint endLuminosity functionRest-frame ultraviolet luminosity functionHigh-redshift galaxy candidatesUltraviolet luminosity functionStar formationStellar feedbackAB magBright endRedshift rangeEarly epochsApparent magnitudeNumber densityFirst epochNew measurementsSystematic effectsData reduction processRobust sampleTheoretical predictionsGood agreementSignificant evolutionNIRCamJWST
2010
Spin and structural halo properties at high redshift in a Λ cold dark matter universe
Davis A, Natarajan P. Spin and structural halo properties at high redshift in a Λ cold dark matter universe. Monthly Notices Of The Royal Astronomical Society 2010, 407: 691-703. DOI: 10.1111/j.1365-2966.2010.16956.x.Peer-Reviewed Original ResearchCold dark matter universeDark matter haloesHigh-spin haloesMatter haloesHigh-redshift dark matter haloesHigh-resolution cosmological simulationsCircular velocity curvesDetailed convergence testsLow-spin haloesHigh-density environmentsLow-spin counterpartsHalo massStar formationCircular velocitySpherical haloHigh redshiftRotation curvesCosmological simulationsHalo propertiesIndividual haloesRedshift rangeEarly epochsSpin parameterMass functionClustering strength
2007
Substructure in lensing clusters and simulations
Natarajan P, De Lucia G, Springel V. Substructure in lensing clusters and simulations. Monthly Notices Of The Royal Astronomical Society 2007, 376: 180-192. DOI: 10.1111/j.1365-2966.2007.11399.x.Peer-Reviewed Original ResearchVelocity dispersion functionArchival Hubble Space Telescope dataDispersion functionGalaxy-galaxy lensing techniquesLambda cold dark matter modelCold dark matter modelHubble Space Telescope dataDark matter modelPresence of galaxiesSpace Telescope dataTotal cluster massCluster member galaxiesDetailed mass modelWeak lensing regimeSpecific mass rangeMember galaxiesMatter modelCluster massLensing analysisTelescope dataLensing techniquesRedshift rangeMillennium SimulationSimulated clustersSubhaloes
2006
GRB 050814 at z = 5.3 and the Redshift Distribution of Swift GRBs
Jakobsson P, Levan A, Fynbo J, Priddey R, Hjorth J, Tanvir N, Watson D, Jensen B, Sollerman J, Natarajan P, Gorosabel J, Cerón J, Pedersen K. GRB 050814 at z = 5.3 and the Redshift Distribution of Swift GRBs. AIP Conference Proceedings 2006, 836: 552-557. DOI: 10.1063/1.2207953.Peer-Reviewed Original ResearchRedshift distributionMean redshiftSwift GRBsGRB 050814Red optical coloursStar formation rateX-ray observationsGRB redshift distributionHigh mean redshiftSpectral energy distributionWide redshift rangeHigh redshift burstsOptical colorsGRB rateIntergalactic mediumRedshift rangeEnergy distributionGRB sampleGRBsFormation rateRedshiftEfficient probeUniverseSignificant fractionGalaxiesA mean redshift of 2.8 for Swift gamma-ray bursts
Jakobsson P, Levan A, Fynbo J, Priddey R, Hjorth J, Tanvir N, Watson D, Jensen B, Sollerman J, Natarajan P, Gorosabel J, Cerón J, Pedersen K, Pursimo T, Árnadóttir A, Castro-Tirado A, Davis C, Deeg H, Fiuza D, Mykolaitis S, Sousa S. A mean redshift of 2.8 for Swift gamma-ray bursts. Astronomy & Astrophysics 2006, 447: 897-903. DOI: 10.1051/0004-6361:20054287.Peer-Reviewed Original ResearchGamma-ray burstsSwift gamma-ray burstsMean redshiftRed optical coloursStar formation rateHigh-redshift UniverseX-ray observationsHigh mean redshiftSpectral energy distributionWide redshift rangeHigh redshift burstsStar formationOptical colorsGRB rateIntergalactic mediumRedshift distributionRedshift rangeHigh luminosityEnergy distributionGRB 050814RedshiftAfterglowUniverseFormation rateEfficient probe
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply