2024
High Resolution Reconstruction of the Proximal Tubule Apical Endocytic Pathway
Lackner E, Pandya R, Burdyniuk M, Xu C, Pang S, Caplan M, Weisz O. High Resolution Reconstruction of the Proximal Tubule Apical Endocytic Pathway. Physiology 2024, 39: 998. DOI: 10.1152/physiol.2024.39.s1.998.Peer-Reviewed Original ResearchApical early endosomesDense apical tubulesApical endocytic pathwayEndocytic pathwayApical membraneMembrane invaginationsReceptor recyclingApical vacuolesInterconnected network of tubulesProximal tubulesPT cellsBase of microvilliNetwork of tubulesMultiligand receptor megalinEarly endosomesBudding vesiclesKidney proximal tubulesEndocytic compartmentsEndocytic entryEndosomal compartmentsApical tubulesStable compartmentsSubapical regionGlomerular filtration barrierApical uptake
2019
Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes
Chen J, Loukola A, Gillespie NA, Peterson R, Jia P, Riley B, Maes H, Dick DM, Kendler KS, Damaj MI, Miles MF, Zhao Z, Li MD, Vink JM, Minica CC, Willemsen G, Boomsma DI, Qaiser B, Madden PAF, Korhonen T, Jousilahti P, Hällfors J, Gelernter J, Kranzler HR, Sherva R, Farrer L, Maher B, Vanyukov M, Taylor M, Ware JJ, Munafò MR, Lutz SM, Hokanson JE, Gu F, Landi MT, Caporaso NE, Hancock DB, Gaddis NC, Baker TB, Bierut LJ, Johnson EO, Chenoweth M, Lerman C, Tyndale R, Kaprio J, Chen X. Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes. Nicotine & Tobacco Research 2019, 22: 900-909. PMID: 31294817, PMCID: PMC7249921, DOI: 10.1093/ntr/ntz099.Peer-Reviewed Original ResearchConceptsGenome-Wide Meta-AnalysisGene-based analysisChemokine signaling pathwaysGenetic architectureActin cytoskeletonNew lociReceptor recyclingMAPK signalingPathway interactionsBiological pathwaysSignaling pathwaysAxon guidanceNovel pathwayPhenotypeNovel candidatesEuropean ancestryPathwayReplication sampleNetwork analysisReplicationIno80CCytoskeletonCOPB2EndocytosisSORBS2
2010
Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory
Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, Yan Z. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Molecular Psychiatry 2010, 16: 156-170. PMID: 20458323, PMCID: PMC3108461, DOI: 10.1038/mp.2010.50.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBiophysicsCells, CulturedCorticosteroneDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgentsExcitatory Postsynaptic PotentialsGene Expression RegulationGlutamic AcidGreen Fluorescent ProteinsHormone AntagonistsImmediate-Early ProteinsIn Vitro TechniquesLong-Term PotentiationMaleMaze LearningMemory, Short-TermMifepristonePatch-Clamp TechniquesPeptidesPrefrontal CortexProtein Serine-Threonine KinasesPyramidal Cellsrab GTP-Binding ProteinsRatsRats, Sprague-DawleyReceptors, GlutamateRNA, Small InterferingStress, PsychologicalSynaptic TransmissionTime FactorsTransfectionConceptsPrefrontal cortexGlutamatergic transmissionAcid receptorsPFC pyramidal neuronsAspartic acid (NMDA) receptorsIsoxazolepropionic acid (AMPA) receptorsInduction of serumCorticosteroid stress hormonesFunction of NMDARsStress-induced enhancementSustained potentiationPyramidal neuronsCorticosterone treatmentSynaptic responsesSynaptic transmissionBehavioral stressorsGlucocorticoid-inducible kinaseGlucocorticoid receptorAcute stressStress hormonesΑ-aminoSurface expressionReceptorsUnderlying mechanismReceptor recyclingThe Stress Hormone Corticosterone Increases Synaptic α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors via Serum- and Glucocorticoid-inducible Kinase (SGK) Regulation of the GDI-Rab4 Complex*
Liu W, Yuen EY, Yan Z. The Stress Hormone Corticosterone Increases Synaptic α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors via Serum- and Glucocorticoid-inducible Kinase (SGK) Regulation of the GDI-Rab4 Complex*. Journal Of Biological Chemistry 2010, 285: 6101-6108. PMID: 20051515, PMCID: PMC2825404, DOI: 10.1074/jbc.m109.050229.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Inflammatory AgentsCell LineCerebral CortexCorticosteroneGuanine Nucleotide Dissociation InhibitorsImmediate-Early ProteinsMiceNeuronsProtein Serine-Threonine KinasesProtein Transportrab4 GTP-Binding ProteinsRatsReceptors, AMPAReceptors, NeurotransmitterSynapsesUp-RegulationConceptsNucleotide Dissociation InhibitorSer-213Glucocorticoid-inducible kinaseRab proteinsKinase regulationDissociation inhibitorIsoxazolepropionic acid (AMPA) receptorsSmall GTPaseEarly endosomesAcid receptorsFunctional cycleCorticosteroid signalingSGK phosphorylationPlasma membraneRab4Receptor recyclingMolecular mechanismsCellular targetsCorticosteroid stress hormonesNeuronal functionPhosphorylationSurface expressionStress hormonesMembraneRegulation
1999
A tyrosine‐based sorting signal in the β2 integrin cytoplasmic domain mediates its recycling to the plasma membrane and is required for ligand‐supported migration
Fabbri M, Fumagalli L, Bossi G, Bianchi E, Bender J, Pardi R. A tyrosine‐based sorting signal in the β2 integrin cytoplasmic domain mediates its recycling to the plasma membrane and is required for ligand‐supported migration. The EMBO Journal 1999, 18: 4915-4925. PMID: 10487744, PMCID: PMC1171563, DOI: 10.1093/emboj/18.18.4915.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic domainCytoplasmic domainBeta-subunit cytoplasmic domainAdhesive functionTyrosine-based endocytic signalsSubunit cytoplasmic domainClathrin-dependent endocytosisSite-directed mutagenesisNon-conservative substitutionsChinese hamster ovary cellsEndocytic signalsRegulated internalizationMembrane rufflesUnrelated functionsRecycling compartmentHamster ovary cellsEctopic expressionPlasma membraneReceptor recyclingDegradative pathwayIntegrin dynamicsCell adhesionCell migrationCell surfaceOvary cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply