2021
A KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation
Zhang Y, Ali SR, Nabbout R, Barcia G, Kaczmarek LK. A KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation. Journal Of Neurophysiology 2021, 126: 532-539. PMID: 34232791, PMCID: PMC8409950, DOI: 10.1152/jn.00257.2021.Peer-Reviewed Original ResearchConceptsFunctional channelsProtein kinase C.Serious human diseasesPotassium channelsWild-type channelsEpilepsy of infancyChannel modulationTerminal domainIon channel mutationsPKC phosphorylationC-terminusNormal neuronal functionChannel proteinsKv3.1 potassium channelRegulatory sitesKinase C.Human diseasesChannel functionPhosphorylationIon channelsMutationsNovo variantsChannel mutationsBiophysical propertiesNeuronal function
2016
Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex
Fleming MR, Brown MR, Kronengold J, Zhang Y, Jenkins DP, Barcia G, Nabbout R, Bausch AE, Ruth P, Lukowski R, Navaratnam DS, Kaczmarek LK. Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. Cell Reports 2016, 16: 2281-2288. PMID: 27545877, PMCID: PMC5123741, DOI: 10.1016/j.celrep.2016.07.024.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsBiosensing TechniquesBithionolBridged Bicyclo Compounds, HeterocyclicCell MembraneCerebral CortexFragile X Mental Retardation ProteinGene Expression RegulationHEK293 CellsHumansIon TransportMiceMice, KnockoutMicrofilament ProteinsMutationNerve Tissue ProteinsNeuronsPatch-Clamp TechniquesPhosphorylationPotassium ChannelsPotassium Channels, Sodium-ActivatedPrimary Cell CultureProtein BindingRNA, Small InterferingSignal TransductionThiazolidinesXenopus laevisConceptsProtein phosphatase 1Plasma membraneProtein kinase C.C-terminal residuesPhactr-1Potassium channelsPhosphatase 1Terminal domainSlack channelsHuman mutationsKinase C.Sodium-activated potassium channelsPharmacological activatorsOptical biosensor assayChannel stimulationSlack currentsBiosensor assaysMembraneMutantsPhosphorylationIntellectual disabilityProteinMutationsSevere intellectual disabilityActivator
2001
Wnts differentially regulate colony growth and differentiation of chondrogenic rat calvaria cells
Bergwitz C, Wendlandt T, Kispert A, Brabant G. Wnts differentially regulate colony growth and differentiation of chondrogenic rat calvaria cells. Biochimica Et Biophysica Acta 2001, 1538: 129-140. PMID: 11336784, DOI: 10.1016/s0167-4889(00)00123-3.Peer-Reviewed Original ResearchConceptsChondrogenic cell lineReporter gene expressionWnt effectsGene expressionCell linesWnt-7aChondrogenic differentiationWnt-5aGreen fluorescence proteinProtein kinase C.Protein kinase CFrizzled-related proteinsCollagen type II promoterLimb patterningSignal transductionEmbryonic developmentRat calvaria cellsWnt familyType II promoterNIH3T3 cellsReporter systemCartilage-specific proteoglycansFluorescence proteinCartilage differentiationKinase C.
2000
Extracellular Atp Inhibits the Small-Conductance K Channel on the Apical Membrane of the Cortical Collecting Duct from Mouse Kidney
Lu M, MacGregor G, Wang W, Giebisch G. Extracellular Atp Inhibits the Small-Conductance K Channel on the Apical Membrane of the Cortical Collecting Duct from Mouse Kidney. Journal Of General Physiology 2000, 116: 299-310. PMID: 10919872, PMCID: PMC2229488, DOI: 10.1085/jgp.116.2.299.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAffinity LabelsAlkaloidsAnimalsCarbazolesColforsinCyclic AMPCyclic AMP-Dependent Protein KinasesCyclic GMP-Dependent Protein KinasesEnzyme InhibitorsExtracellular SpaceIndolesIon Channel GatingKidney Tubules, CollectingMembrane PotentialsMiceMice, Inbred C57BLNaphthalenesNG-Nitroarginine Methyl EsterOkadaic AcidPatch-Clamp TechniquesPhosphoprotein PhosphatasesPhosphorylationPotassiumPotassium ChannelsPotassium Channels, Calcium-ActivatedProtein KinasesRatsRats, Sprague-DawleyReceptors, PurinergicSmall-Conductance Calcium-Activated Potassium ChannelsThionucleotidesUridine TriphosphateConceptsApical membraneChannel activityProtein kinase AProtein kinase C.Protein phosphatasePurinergic receptor stimulationSmall-conductance potassium channelsOkadaic acidExtracellular ATP concentrationKinase AKinase C.Addition of ATPG proteinsRat homologuePhospholipase CPhosphatase activitySK activitySmall-conductance K channelsApical receptorsATP inhibitsSingle-channel analysisATPNucleotide sensitivityApical K channelsK channels
1997
The Cytoplasmic Domain of Alzheimer’s Amyloid Precursor Protein Is Phosphorylated at Thr654, Ser655, and Thr668 in Adult Rat Brain and Cultured Cells
Oishi M, Nairn A, Czernik A, Lim G, Isohara T, Gandy S, Greengard P, Suzuki T. The Cytoplasmic Domain of Alzheimer’s Amyloid Precursor Protein Is Phosphorylated at Thr654, Ser655, and Thr668 in Adult Rat Brain and Cultured Cells. Molecular Medicine 1997, 3: 111-123. PMID: 9085254, PMCID: PMC2230054, DOI: 10.1007/bf03401803.Peer-Reviewed Original ResearchConceptsAlzheimer's disease amyloid precursor proteinCytoplasmic domainCultured cell linesCell cycle-dependent mannerAmyloid precursor proteinCultured cellsCycle-dependent mannerPhosphorylation state-specific antibodiesPhosphorylation-specific antibodiesPrecursor proteinCell linesProtein kinase C.Stoichiometric phosphorylationG2/M phaseAPP isoformsThr654Alzheimer amyloid precursor proteinOkadaic acidBiological functionsCell cycleKinase C.Intact cellsPhosphorylationHeLa cellsSpecific inhibitor
1994
Mechanism of desensitization of the cloned vasopressin V1a receptor expressed in Xenopus oocytes
Nathanson MH, Burgstahler AD, Orloff JJ, Mani A, Moyer MS. Mechanism of desensitization of the cloned vasopressin V1a receptor expressed in Xenopus oocytes. American Journal Of Physiology 1994, 267: c94-c103. PMID: 8048495, DOI: 10.1152/ajpcell.1994.267.1.c94.Peer-Reviewed Original ResearchConceptsVasopressin V1a receptorV1a receptorReceptor desensitizationXenopus oocytesCyclic monophosphateMechanism of desensitizationG protein-mediated increasesProtein-mediated increasePretreatment of oocytesSubsequent microinjectionReceptor binding sitesMin of exposureProtein kinase C.Protein kinase CCytosolic Ca2Maximal stimulationDesensitizationReceptorsPhorbol dibutyrateKinase C.Inositol trisphosphateKinase CVasopressinOocytesConfocal microscopy
1990
Tumor necrosis factor alpha modifies agonist-dependent responses in human neutrophils by inducing the synthesis and myristoylation of a specific protein kinase C substrate.
Thelen M, Rosen A, Nairn A, Aderem A. Tumor necrosis factor alpha modifies agonist-dependent responses in human neutrophils by inducing the synthesis and myristoylation of a specific protein kinase C substrate. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5603-5607. PMID: 2116001, PMCID: PMC54375, DOI: 10.1073/pnas.87.15.5603.Peer-Reviewed Original ResearchMeSH KeywordsColony-Stimulating FactorsGranulocyte-Macrophage Colony-Stimulating FactorGrowth SubstancesHumansIn Vitro TechniquesInterferon-gammaIntracellular Signaling Peptides and ProteinsKineticsLipopolysaccharidesLysineMembrane ProteinsMyristic AcidMyristic AcidsMyristoylated Alanine-Rich C Kinase SubstrateNeutrophilsPhosphatesPhosphopeptidesPhosphorylationProtein BiosynthesisProtein Kinase CProteinsRecombinant ProteinsTumor Necrosis Factor-alphaConceptsSpecific protein kinase C substrateProtein kinase C substrateProtein kinase CC substrateKinase C.Kinase CAlanine-rich C kinase substratePhosphorylation of MARCKSN-terminal glycineC kinase substrateProtein kinase C.Agonist-dependent responsesIdentical phosphopeptidesKinase substrateTransduction pathwaysMARCKS phosphorylationMARCKSEnhanced phosphorylationHuman neutrophilsMurine fibroblastsEffector moleculesProteinPhosphorylationMyristoylationBovine brain
1987
Cholecystokinin induces a decrease in Ca2+ current in snail neurons that appears to be mediated by protein kinase C
Hammond C, Paupardin-Tritsch D, Nairn A, Greengard P, Gerschenfeld H. Cholecystokinin induces a decrease in Ca2+ current in snail neurons that appears to be mediated by protein kinase C. Nature 1987, 325: 809-811. PMID: 2434859, DOI: 10.1038/325809a0.Peer-Reviewed Original ResearchConceptsProtein kinase CAction of noradrenalineDependent action potentialsKinase CIntracellular injectionSnail neuronsAction potentialsProtein kinaseCardiac muscleCholecystokininSnail Helix aspersaExcitable tissuesProtein kinase C.Low concentrationsCa2Cyclic GMP-dependent protein kinaseHelix aspersaInjectionGMP-dependent protein kinaseKinase C.KinaseNoradrenalineCCK8Neurons
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply